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Abstract

In recent years navigation on the basis of computation
of the camera path and the distance to obstacles with the
aid of field of image motion velocities (i.e. optical flow,
OF) became highly demanded particularly in the area of
relatively small and even micro unmanned aerial vehi-
cles (UAV). Video sequences captured by onboard cam-
era gives the possibility of the OF calculation with the
aid of relatively simple algorithms, like Lucas-Kanade.
The complete OF is the linear function of linear and
angular velocities of the UAV which provides an addi-
tional means for the navigation parameters estimation.
Such UAV navigation approach presumes that on-board
camera gives the video sequence of the underlying sur-
face images providing the information about the UAV
evolutions. Navigation parameters are extracted on the
basis of exact formulas for OF which gives the descrip-
tion of the observation process for estimation based on
Kalman filtering. One can expect the high accuracy of
the estimated parameters (linear and angular velocities)
because their number is substantially less than the num-
ber of measurements (practically the number of the cam-
era pizels).

1. Introduction
Development in optoelectronic devices and the sys-

tems of the data transmission leads to usage of optical
devices in UAV remote control. In the case of remote
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control the characteristics of such devices must be co-
ordinated with the properties of the human vision. But
during the autonomous flight, when the optical systems
work together with on-board computer servicing for ob-
jects recognition and their position determination, de-
mands to these devices become different. The function
of the optoelectronic system (OES) and on-board com-
puter is the determining of the camera motion as well
as observable objects [I] with the aid of their images
analysis. There are two approaches in the OES usage.
The first one is the extraction and determining of the
motion of some specific features of the objects by anal-
ogy of the human vision, in this case the metrics of such
measurements may be easily implemented in the navi-
gation system. The second one is non metrical analysis
by analogy of the insects and birds vision [2]. However,
recently it appears the possibility to use so-called opti-
cal flow (OF) which contains the information about the
camera evolution in the implicit form [3]. The OF may
be used for UAVs landing-docking [4], [5], in tracking of
various communication lines [6], and even for manoeu-
vring control [7]. The problem of the image motion is
very urgent in the analysis and optimization of OES for
air and space observation system, where non compen-
sated image motion leads to the image degradation [§],
[9]. The image motion field is non-uniform across the
field of view, but depends linearly on the camera motion
velocities [I0]. The general methodology for image mo-
tion field calculation was developed long ago [9], [I1]. It
gives opportunity to create the navigation sensors. In
this work the general procedure for OF calculation as a
function of the camera (aircraft) motion velocities had
been developed. With the algorithms of the OF calcu-
lation on the basis of real video sequence this procedure
can serve as the additional navigation sensor for UAV
velocities. We intend to use the real measured OF to
determine linear and angular velocities which then will



be incorporated with inertial-navigation system for au-
tonomous UAV control.

2. Optical flow

In this work we use surface-UAV-image model (see
Fig.[l) and pinhole camera model (see Fig.|2)) described
in [12).
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Figure 1. Surface-UAV-image model
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Figure 2. Pinhole camera model

Assume the image point coordinates are (§,1,—F).
From the pinhole camera model one can derive in an-
alytical form the point P coordinates on the observed
surface visible to the image point P as the intersection
point of the optical ray passing through principle lens
point G and image point P in conjugate focal plane
with surface plane z =0 (see Fig. . And for the image
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motion velocities at given image point (&,7) we get the
following relations [111 [14]

Jx  ox dx
Ve & aIn dt
Vi dy dy dy
9k I de LT

(1)

According to the optical flow definition it appears

as an image translation, which determines the signal

evolution. By observing the sequence of images caused

by the camera motion one can get the equation to OF

determination. As the result we have got the linear

form for V.,V,,V,,®,, ®,, ®,, which can be written as
the following matrix equation:

V§ Vi
:Dl(gvnat) +
Vi Vy
o (2)
DZ(éanvt) @ +D3(§777J)Vz,
@y

where (V;,Vy)T are the linear velocities of the UAV in
horizontal directions, (@,,®,,®,)T are the angular ve-
locities relative to UAV’s center of masses (COM), and
V. is the vertical linear velocity of the UAV. So the equa-
tions with estimations of the lhs via Lucas-Kanade
algorithm [I3] give the system of equations for the ve-
locity navigation parameters determination. The re-
sulting system of equations has the sufficient dimension
to determine the velocity navigation parameters with
high accuracy by least squares algorithm. Thereby, the
explicit model of the OF (|1)), which is joint with the di-
rect estimation of the OF gives the means for the UAV
velocities estimation.

The exact matrices Dy,D;,D3 depend on the cur-
rent attitude of the UAV, including position and the
angular orientation, which must be estimated either on
the basis of the OF or the INS measurements, or both.
Here we use the angles estimation obtained from the
OF. The great majority of existing works use the set
of formulae for zero orientation angles with camera di-
rected in nadir (see, for example, [14, [15]).

3. UAV motion parameters estimation
using OF and Kalman filtering

The model of UAV motion is described below, it
includes the UAV dynamic model and generic measure-
ments model based on OF estimation of the UAV atti-
tude velocities.



3.1. The UAYV linear velocity estimation

The UAV velocity vector V = col(Vy,Vy,V;) by co-
ordinates x,y,z
V(terr) =

V(i) +alte) At +W (), 3)

where 1, is current time, # = fo + kA, a(t)
col(ay,ay,a;) — the vector of accelerations, W (t) —
is vector of the current perturbations in UAV motion.
It consists of white noises with variances (GXZ,G}Z,GZZ)
Velocity measurements using OF have the following

general form:
my (1) = (4)

where Wy (7) — are uncorrelated white noises with
variances (07, G&v ) G&z ).
Consider relations and for the velocity along

X axis:

V() + Wy (),

Vi(tiy1) = Va(te) + ax (i) At + W (1),

my, (tx) = Va(ti) + Wy, (1)

Velocity along x axis estimation on the k+ 1 step:

Vilter1) = Ktk )my, (k1) + (1 — Ke(ter1) )V (tesr),
Ve(tir1) = Valtr) + ax(ti) At

We should minimize the mean squared of the fol-
lowing:

Vi(tis1) — (tkH) =
(1 = Kx(tgs1)) (Vi) —

K (try 1) Wy, (trs1)-

Vi) + Wie(t))—

So we are solving

P (1)

=(1-K

= E[(Va(trs1) = Valtr1))?] =

w(te+1))> (P (1) + 07) + (K(tx41) >0, —  min

Ki(trv1)

Here we get the estimation V; :

Veltir1) = Ke(tr lA)mVx (k1) +
(1= Ke(ter1)) (Va(te) + ax(tc) At),

244 (tk) + ze
PVVe() + o+ 07

KX(thrl) =

oy, (P (n) + o?)

JAAZ - .
( PVYx(1) + 02 + o

1) =

The formulae for Vy and V, are analogous.
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3.2. The UAV angles and angular velocities
estimation

UAV angular position estimation is given by three
angles 0(),0(t),v(tx) (pitch, roll and yaw, respec-
tively), angular velocities (%), @, (), 0y () and an-
gular accelerations a, (), a,(t), ay (1)

Pitch angle and pitch angular velocity dynamics
described by the following relations:

2

B(tk) + (Op(tk)At +ap(tk)—7

0(tks1) = >

a)p(tk+1) = (J)p(lk) —|—(1p(tk)At —|—Wp(l‘k).

where W, (fy) — is the white noise with variance 0'1%.

The pitch angular velocity measurement using the
OF has the following form:

mp (tk) =

where Wy, () — is the noise in the angular velocity
measurements using OF, which is the white noise with
variance o7, .

Similarly to the linear velocity estimation we get
the pitch angle (1) and pitch angular velocity ) ()

estimations:

p (1) +Wa, (1),

. . . Ar?
O(txr1) =0(1) + a),,(tk)Atha,,(tk)7
D (trr1) = Kp(tey1)mp (tey 1)+

(1= Kp(te1)) (@p (1) + ap (1) At),

pa),,a)p( k) 4 O-I% (6)
K (tk+1) W, O, 2 2 )
P » (1) + 05 + 0,

. o, (P (1) + o))
PO (tiy) = 5=

< >
PPp®p (tk) + Gp + Ga),,
The formulae for ¢,¥ and @, ®, are analogous.

3.3. Joint estimation of the UAV attitude

So and @ give the estimation V of the attitude
parameters vector, namely:

V = col(Vy,Vy, V., @), @, 0y)

This vector measured via OF for each pixel in each
frame, which gives according to the overdetermined
system of linear equation for V entries.

Since all noises are uncorrelated the covariance ma-
trix P for V is diagonal with entries ,@.

4. Computation procedure

Here the general computational algorithm for the
UAV attitude velocities (linear and angular) has been



provided. It is described in natural language in the
form of definitions and function-style calls without us-
ing notation of a specific programming language. The
algorithm consists of the following steps:

1. Initialization step

e Set UAV current state vector at the moment
Iy
S(IO) : (VX7VyaVz7 (b[h be, d)h é: (f)» ?’X"f/’Z)
e Set camera matrix M (see below at Section [f)
e Set start time 7y and finish time T

1
e Set time step Ar = 7PS’ where FPS is the

number of frames per second for the video
sample

e Set Kalman Filter’s (see Section 3) values for
the first iteration

e Assign RMS values of measurement error

e Set constant image dimensions &,7 of the
whole video sequence

e Define  acceleration  function

(ax(t),ay(1),a;(1),ap(1),ar(1),ay(t))

2. Run function that calculates Optical flow field

EEn (tx+1) with the aid of Lucas-Kanade algo-
rithm

BEM (1) = LEUEM (1,1, 157 (1)),

a(r)

where 1067 (1) and I3ul (t;) are the successive
images of the video sequence and the vector field

EEm (tx41) consists of elements described by

3. Run function that solves linear system, described
in subsection [3:3] with least squares method using
S(%) for the current angular attitude and height,
and M provides nominators for image coordinates
units to metric units transformation

m<tk+1) = (manmVy7mVZ7mpamr7m}‘) =

LS(E EM (1,1),8(0), M)

4. Run function for calculation of the recurrent
Kalman Filter formulae along with covariance ma-
trix P

8 (tes1) = Ve, W, Vi, @, @, @) = KF(m(1is), P)

5. Run function which integrates estimated velocities
with time step At

A A A

Sz(tk+1) :A (éa(ﬁv?LXvYaZ) =
Euler(S" (tx+1),8% (1), a(ty), Ar)
6. Renew the estimated state vector

S(tir1) = {8 (tr1), 8% (1)}

7. Make a time step f;11 =t + At and continue from
Step 2 until the finish time T reached.
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5. Modeling results

This approach was presented in [14], where we
demonstrated the possibility to determine the linear
and angular velocities for UAV “flying” over the ar-
tificial landscape. Here we provide a series of other
experimental results based on real video sequence. We
run the computation procedure described in Section [4]
on the video sequence containing a movie captured by
on-board camera from UAV flying at almost constant
altitude with almost constant linear velocity as it looks
like from the first glance. The data was taken from
openly available resource. However the Lucas-Kanade
method operates with the pairs of sequential intensity-
only frames. Thereby the additional pre-processing step
is necessary to convert components of RGB color space
values to intensity. In order to work with the video se-
quence taken by the real camera one needs to evaluate
camera matrix M (see, for example [16],[17]). We were
able to restore the camera parameters and the initial
UAV’s height and thereby to measure the OF which
gives the information about the real velocities.

5.1. Numerical parameters

To start the computational procedure the following
initial conditions were used:

o UAV vector initialization at the moment #y

S(1) : (Ve =0m/s,Vy =0m/s,V. =0m/s,
:p =0rad/s,®, = OArad/s, (bf = Orad/s,
§=0,¢=0,9=0,8 =0m,¥ =0m,Z = 400m)

e Initialize the camera matrix M. These values were
calculated for the video sample.

152,77 0,0 969,2111
M= 0,0  1150,483 535,3755
0,0 0,0 1,0

e Set time fyp = 10s, finish time 7 = 160s, FPS = 25
frames per second, time step Ar = 0,04s

e Set K(to) corresponding to S(to)
e Assume these RMS values of measurement error:

Oy, = O'vy = Oy, =0,3 m,

Ow, = Ow, = O, = 0,00015  rad,
o, =0y,=0,=0,1 m,
0y =0y, =0,=0,017 rad

e Set image dimensions for full-HD video data & =
1920,77 = 1080



_>
e Acceleration function a(t) = 0. We forced to make
this assumption due to the lack of the flight teleme-
try data which could provide the acceleration value
series.
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Figure 3. UAV linear velocity estimation by means of
the OF sensor
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Figure 4. UAV angular attitude estimated using com-
putation procedure

5.2. Discussion

We have compared qualitatively the visual obser-
vation of the video sequence with the estimated veloc-
ities and coordinates Fig. It is interesting that
OF methodology was able to capture the descent of
the UAV (about 50 m), practically indistinguishable by
direct visual observation (see Fig. [3) and the side shift
(about 100 m) along the whole path (about 1 km). The

10 20 30 40 50 60 70 B0 90 100 110 120 130 140 150 160

150 160
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Figure 5. UAV linear attitude estimated using com-
putation procedure

usage of current values of angles, which looks very ir-
regular (see Fig. [d)) meanwhile gives very reliable esti-
mation of linear velocities. Therefore the integral dis-
placement of the UAV looks quite linear (see Fig. |5]).

6. Conclusion

Most of existing implementations of the OF for
UAV navigation relates to indoor applications and in-
tended mainly to avoid the collisions with obstacles.
For this reason they need just qualitative behavior of
the OF in approaching to walls and other obstacles.
In this case they do not need the serious mathematical
tools for evaluation of the UAV attitude, just simple for-
mulas related to simple mutual locations. Otherwise,
general situation needs more sophisticated algorithms
which were provided earlier in [13] and tested here. Fu-
ture work will be intended to the data fusion of the OF
with other optical devices and INS.

As one can see the OF itself gives the possibility to
evaluate the linear and angular velocities of the UAV
attitude parameters. It is not enough for navigation
during the long term autonomous missions since the ini-
tial bias in the position and the attitude will grow up.
So even if the OF gives rather high accuracy of velocity
estimation the intermediate correction might be neces-
sary. Of course the usual way of such correction is the
use of GPS, but in the case of GPS denied environment
the visual navigation on the basis of terrain landmarks
could be possible [I8], [19]. Application of landmarks
methods needs two complementary approaches devel-
oped recently, namely: filtering on the basis of bearing-
only observations [19], [20] and recurrent RANSAC for
rejection of outliers [2I]. The last one had been de-
veloped with aid of the pseudo-measurements Kalman

150 160



filtering (PKF) [22], [23]. The analysis of joint OF and
PKF navigation on the basis of the landmarks observa-
tion will be the matter of future research. Moreover, the
usage of other OF estimations which are different from
the Lucas-Kanade method might be more appropriate
241, 25], [26].
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