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Abstract

We consider a class of optimization problems with a
strongly convex objective function. The feasible set in
this class is given as an intersection of a simple con-
vex set with a set given by a number of linear equality
and inequality constraints. This class of problems often
arises in applications covering the problems of entropy-
linear programming, ridge regression, elastic net, reg-
ularized optimal transport, etc. We propose a method
which can solve such problems with a given accuracy in
terms of both the primal objective and the linear con-
straints infeasibility. Unlike existing methods it can deal
with the case when no bound for the norm of any dual
solution is available. We estimate the complexity of our
method in terms of the number of iterations which is
required to achieve the desired accuracy of the approxi-
mate solution.

1. Introduction

In this paper we deal with a constrained convex
optimization problem of the following form

(P1) min
x∈Q⊆E

{ f (x) : A1x = b1,A2x≤ b2} ,

where E is a finite-dimensional real vector space, Q
is a simple closed convex set, A1, A2 are given linear
operators from E to some finite-dimensional real vec-
tor spaces H1 and H2 respectively, b1 ∈ H1, b2 ∈ H2 are
given, f (x) is a ν-strongly convex function on Q with
respect to some chosen norm ‖·‖E on E. The last means
that for any x,y ∈Q f (y)≥ f (x)+ 〈∇ f (x),y−x〉+ ν

2 ‖x−
y‖2

E , where ∇ f (x) is any subgradient of f (x) at x and
hence is an element of the dual space E∗. Also we de-
note the value of a linear function g ∈ E∗ at x ∈ E by
〈g,x〉.

Problem (P1) was considered in [1]. This problem
captures a broad set of optimization problems arising in
applications. The first example is the classical entropy-
linear programming (ELP) problem [2] which arises in
many applications such as econometrics [3], modeling in
science and engineering [4], especially in the modeling
of traffic flows [5] and the IP traffic matrix estimation
[6, 7]. Other examples are the ridge regression problem
[8] and the elastic net approach [9] which are used in
machine learning. Finally, the problem class (P1) covers
problems of regularized optimal transport (ROT) [10]
and regularized optimal partial transport (ROPT) [11],
which recently have become popular in application to
the image analysis.

The classical balancing algorithms such as [10, 12,
13] are very efficient for solving ROT problems or spe-
cial types of ELP problem, but they can deal only with
linear equality constraints of special type and their rate
of convergence estimates are rather impractical [14]. In
[11] the authors provide a generalization but only for
the ROPT problems which are a particular case of Prob-
lem (P1) with linear inequalities constraints of a special
type and no convergence rate estimates are provided.
Unfortunately the existing balancing-type algorithms
for the ROT and ROPT problems become very unstable
when the regularization parameter is chosen very small,
which is the case when one needs to calculate a good
approximation to the solution of the optimal transport
(OT) or the optimal partial transport (OPT) problem.

In practice the typical dimensions of the spaces
E,H1,H2 range from thousands to millions, which makes
it natural to use a first-order method to solve Prob-
lem (P1). A common approach to solve such large-scale
Problem (P1) is to make the transition to the Lagrange
dual problem and solve it by some first-order method.
Unfortunately, existing methods which elaborate this
idea have at least two drawbacks. Firstly, the conver-
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gence analysis of the Fast Gradient Method (FGM) [15]
can not be directly applied since it is based on the as-
sumption of boundedness of the feasible set in both the
primal and the dual problem, which does not hold for
the Lagrange dual problem. A possible way to over-
come this obstacle is to assume that the solution of
the dual problem is bounded and add some additional
constraints to the Lagrange dual problem in order to
make the dual feasible set bounded. But in practice the
bound for the solution of the dual problem is usually
not known. In [16] the authors use this approach with
additional constraints and propose a restart technique
to define the unknown bound for the optimal dual vari-
able value. Unfortunately, the authors consider only
the classical ELP problem with only the equality con-
straints and it is not clear whether their technique can
be applied for Problem (P1) with inequality constraints.
Secondly, it is important to estimate the rate of con-
vergence not only in terms of the error in the solu-
tion of the Lagrange dual problem at it is done in
[17, 18] but also in terms of the error in the solution
of the primal problem 1 | f (xk)−Opt[P1]| and the linear
constraints infeasibility ‖A1xk−b1‖H1 , ‖(A2xk−b2)+‖H2 ,
where vector v+ denotes the vector with components
[v+]i = (vi)+ = max{vi,0}, xk is the output of the algo-
rithm on the k-th iteration, Opt[P1] denotes the optimal
function value for Problem (P1). Alternative approaches
[19, 20] based on the idea of the method of multipliers
and the quasi-Newton methods such as L-BFGS also do
not allow to obtain the convergence rate for the approx-
imate primal solution and the linear constraints infea-
sibility.

Finally the approach of [1] strongly relies on the
assumption that a bound for the norm of some solution
to the problem, dual to Problem (P1) is available. Un-
fortunately this assumption does not hold for example
for the ROT and ROPT problems.

Our contributions in this work are the following.
We extend the approach of [1] in order to be able to
solve Problem (P1) in the case when no bound for the
norm of any solution to the dual problem is available.
Unlike [10, 11, 17, 18, 19, 20, 16] we provide the esti-
mates for the rate of convergence in terms of the error
in the solution of the primal problem | f (xk)−Opt[P1]|
and the linear constraints infeasibility ‖A1xk − b1‖H1 ,
‖(A2xk − b2)+‖H2 . In the contrast to the estimates in
[15], our estimates do not rely on the assumption that
the feasible set of the dual problem is bounded. At the
same time our approach is applicable for the wider class
of problems defined by (P1) than approaches in [10, 16].

1The absolute value here is crucial since xk may not satisfy
linear constraints and hence f (xk)−Opt[P1] could be negative.

2. Preliminaries

2.1. Notation

For any finite-dimensional real vector space E we
denote by E∗ its dual. We denote the value of a linear
function g∈ E∗ at x∈ E by 〈g,x〉. Let ‖·‖E denote some
norm on E and ‖ · ‖E,∗ denote the norm on E∗ which is
dual to ‖ · ‖E

‖g‖E,∗ = max
‖x‖E≤1

〈g,x〉.

In the special case when E is a Euclidean space we de-
note the standard Euclidean norm by ‖ · ‖2. Note that
in this case the dual norm is also Euclidean. By ∂ f (x)
we denote the subdifferential of the function f (x) at a
point x. Let E1,E2 be two finite-dimensional real vector
spaces. For a linear operator A : E1→ E2 we define its
norm as follows

‖A‖E1→E2 = max
x∈E1,u∈E∗2

{〈u,Ax〉 : ‖x‖E1 = 1,‖u‖E2,∗ = 1}.

For a linear operator A : E1→ E2 we define the adjoint
operator AT : E∗2 → E∗1 in the following way

〈u,Ax〉= 〈AT u,x〉, ∀u ∈ E∗2 , x ∈ E1.

We say that a function f : E → R has a L-Lipschitz-
continuous gradient if it is differentiable and its gradient
satisfies Lipschitz condition

‖∇ f (x)−∇ f (y)‖E,∗ ≤ L‖x− y‖E .

We characterize the quality of an approximate so-
lution to Problem (P1) by three quantities ε f ,εeq,εin > 0
and say that a point x̂ is an (ε f ,εeq,εin)-solution to Prob-
lem (P1) if the following inequalities hold

| f (x̂)−Opt[P1]| ≤ ε f , ‖A1x̂−b1‖2 ≤ εeq,

‖(A2x̂−b2)+‖2 ≤ εin. (1)

Here Opt[P1] denotes the optimal function value for
Problem (P1) and the vector v+ denotes the vector with
components [v+]i = (vi)+ = max{vi,0}. Also for any t ∈R
we denote by dte the smallest integer greater than or
equal to t.

2.2. Dual Problem

Let us denote Λ = {λ = (λ (1),λ (2))T ∈ H∗1 ×H∗2 :
λ (2) ≥ 0}. The Lagrange dual problem to Problem (P1)
is

(D1) max
λ∈Λ

{
−〈λ (1),b1〉−〈λ (2),b2〉+

min
x∈Q

(
f (x)+ 〈AT

1 λ
(1) + AT

2 λ
(2),x〉

)}
.
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We rewrite Problem (D1) in the equivalent form of
a minimization problem.

(P2) min
λ∈Λ

{
〈λ (1),b1〉+ 〈λ (2),b2〉+

max
x∈Q

(
− f (x)−〈AT

1 λ
(1) + AT

2 λ
(2),x〉

)}
.

We denote

ϕ(λ ) = ϕ(λ
(1),λ (2)) = 〈λ (1),b1〉+ 〈λ (2),b2〉+

max
x∈Q

(
− f (x)−〈AT

1 λ
(1) + AT

2 λ
(2),x〉

)
(2)

Note that the gradient of the function ϕ(λ ) is equal to
(see e.g. [15])

∇ϕ(λ ) =

(
b1−A1x(λ )

b2−A2x(λ )

)
, (3)

where x(λ ) is the unique solution of the problem

max
x∈Q

(
− f (x)−〈AT

1 λ
(1) + AT

2 λ
(2),x〉

)
. (4)

Note that this gradient is Lipschitz-continuous (see e.g.
[15]) with constant

L =
1
ν

(
‖A1‖2

E→H1
+‖A2‖2

E→H2

)
.

It is obvious that

Opt[D1] =−Opt[P2]. (5)

Here by Opt[D1], Opt[P2] we denote the optimal function
value in Problem (D1) and Problem (P2) respectively.
Finally, the following inequality follows from the weak
duality

Opt[P1]≥ Opt[D1]. (6)

2.3. Main Assumptions

We make the following two main assumptions

1. The problem (4) is simple in the sense that for any
x ∈Q it has a closed form solution or can be solved
very fast up to the machine precision.

2. The dual problem (D1) has a solution λ ∗ =
(λ ∗(1),λ ∗(2))T and there exist some (unknown)
R∗1,R

∗
2 > 0 such that

‖λ ∗(1)‖2 ≤ R∗1 < +∞, ‖λ ∗(2)‖2 ≤ R∗2 < +∞. (7)

2.4. Examples of Problem (P1)

In this subsection we describe several particular
problems which can be written in the form of Problem
(P1).

Entropy-linear programming problem [2].

min
x∈Sn(1)

{
n

∑
i=1

xi ln(xi/ξi) : Ax = b

}
for some given ξ ∈ Rn

++ = {x ∈ Rn : xi > 0, i = 1, ...,n}.
Here Sn(1) = {x ∈ Rn : ∑

n
i=1 xi = 1,xi ≥ 0, i = 1, ...,n}.

Regularized optimal transport problem [10].

min
X∈Rp×p

+

{
γ

p

∑
i, j=1

xi j lnxi j +
p

∑
i, j=1

ci jxi j : Xe = a1,XT e = a2

}
,

(8)
where e ∈ Rp is the vector of all ones, a1,a2 ∈ Sp(1),
ci j ≥ 0, i, j = 1, ..., p are given, γ > 0 is the regularization
parameter, XT is the transpose matrix of X , xi j is the
element of the matrix X in the ith row and the jth
column.

Regularized optimal partial transport prob-
lem [11].

min
X∈Rp×p

+

{
γ

p

∑
i, j=1

xi j lnxi j +
p

∑
i, j=1

ci jxi j :

Xe≤ a1,XT e≤ a2,eT Xe = m
}
,

where a1,a2 ∈ Rp
+, ci j ≥ 0, i, j = 1, ..., p, m > 0 are given,

γ > 0 is the regularization parameter and the inequali-
ties should be understood component-wise.

3. Algorithm and Theoretical Analysis

We use a restart technique with the method of [1]
in order to deal with the unknown bounds R1,R2. Our
method is the further extension of the Fast Gradient
Method [15, 21]. Let {αi}i≥0 be a sequence of coeffi-
cients satisfying

α0 ∈ (0,1],

α
2
k ≤

k

∑
i=0

αi, ∀k ≥ 1.

We define also Ck = ∑
k
i=0 αi and τi =

αi+1
Ci+1

. Usual choice

is αi = i+1
2 , i ≥ 0. In this case Ck = (k+1)(k+2)

4 . Also we
define the Euclidean norm on H∗1 ×H∗2 in a natural way

‖λ‖2
2 = ‖λ (1)‖2

2 +‖λ (2)‖2
2

for any λ = (λ (1),λ (2))T ∈ H∗1 ×H∗2 .

Theorem 1. Let the assumptions listed in the subsec-
tion 2.3 hold and αi = i+1

2 , i≥ 0 in Algorithm 1. Then
after not more than

≤ 4
√

8L(R2
1 + R2

2)max

{√
2
ε f

R∗1
R1

+

√
R∗1

R2
1εeq

+√
R∗1

R1R2εin
,

√
2
ε f

R∗2
R2

+

√
R∗2

R1R2εeq
+

√
R∗2

R2
2εin

}
.
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ALGORITHM 1: Fast Primal-Dual Gradient Method

Input: The sequence {αi}i≥0, accuracy ε f ,εeq,εin > 0,
initial guess R1,R2

Output: The point x̂k.
Set s = 0.
repeat

Set

ε̃eq = min
{

ε f

2s+1R1
,εeq

}
, ε̃in = min

{
ε f

2s+1R2
,εin

}
. (9)

Set λ0 = (λ
(1)
0 ,λ

(2)
0 )T = 0.

Set k = 0.
Set

K = max


⌈√

23+2sL(R2
1 + R2

2)

ε f

⌉
,


√

23+sL(R2
1 + R2

2)

R1ε̃eq

 ,
√

23+sL(R2
1 + R2

2)

R2ε̃in


 .

repeat
Compute

ηk = (η
(1)
k ,η

(2)
k )T =

argmin
λ∈Λ

{
ϕ(λk)+ 〈∇ϕ(λk),λ −λk〉+

L
2
‖λ −λk‖2

2

}
.

ζk = (ζ
(1)
k ,ζ

(2)
k )T =

argmin
λ∈Λ

{
k

∑
i=0

αi (ϕ(λi)+ 〈∇ϕ(λi),λ −λi〉)+
L
2
‖λ‖2

2

}
.

Set

λk+1 = (λ
(1)
k+1,λ

(2)
k+1)T = τkζk +(1− τk)ηk.

Set

x̂k+1 =
1

Ck+1

k+1

∑
i=0

αix(λi) = (1− τk)x̂k + τkx(λk+1).

Set k = k + 1.
until f (x̂k)+ ϕ(ηk)≤ ε f , ‖A1x̂k−b1‖2 ≤ ε̃eq,
‖(A2x̂k−b2)+‖2 ≤ ε̃in or k ≥ K;
Set s = s + 1.

until f (x̂k)+ ϕ(ηk−1)≤ ε f , ‖A1x̂k−b1‖2 ≤ ε̃eq,
‖(A2x̂k−b2)+‖2 ≤ ε̃in;

steps of the inner cycle of Algorithm 1 the point x̂k will
be an approximate solution to Problem (P1) in the sense
of (1).

Proof. Let us denote

ŝ = max
{⌈

log2
R∗1
R1

⌉
,

⌈
log2

R∗2
R2

⌉}
.

Then 2sR1 ≥ R∗1 and 2sR2 ≥ R∗2 and the assumptions of
Theorem 1 of [1] hold. Since the inner cycle of Algo-
rithm 1 is the same as in Algorithm 1 of [1], according to

the aforementioned theorem, we obtain that the stop-
ping criterion in Algorithm 1 of this work fulfills for
some s ≤ ŝ. According to the same theorem the point
x̂k is an approximate solution to Problem (P1) in the
sense of (1).

Let us now estimate the number of inner steps in
our Algorithm 1. On each outer iteration Algorithm 1
makes not more than

K(s) = max

{⌈√
23+2sL(R2

1 + R2
2)

ε f

⌉
,

⌈√
23+sL(R2

1 + R2
2)

R1ε̃eq

⌉
,

√
23+sL(R2

1 + R2
2)

R2ε̃in


 (9)

=

max

{⌈√
24+2sL(R2

1 + R2
2)

ε f

⌉
,

⌈√
23+sL(R2

1 + R2
2)

R1εeq

⌉
,

√
23+sL(R2

1 + R2
2)

R2εin


 (10)

inner steps. Then the total number of inner iterations
is not more than

ŝ

∑
s=0

K(s)≤ 4max

{√
16L(R2

1 + R2
2)

ε f

R∗1
R1

+

√
8L(R2

1 + R2
2)R∗1

R2
1εeq

+√
8L(R2

1 + R2
2)R∗1

R1R2εin
,

√
16L(R2

1 + R2
2)

ε f

R∗2
R2

+

√
8L(R2

1 + R2
2)R∗2

R1R2εeq
+√

8L(R2
1 + R2

2)R∗2
R2

2εin

}
.

Here we used that

ŝ

∑
s=0

2s ≤ 2ŝ+1 ≤ 4max
{

R∗1
R1

,
R∗2
R2

}
and

ŝ

∑
s=0

2s/2 ≤
√

2
ŝ+1

√
2−1

≤ 4max
{

R∗1
R1

,
R∗2
R2

}
.

4. Discussion

We would like to point that the inner cycle of the
proposed algorithm is the same as in [1]. Hence, the be-
havior of the Algorithm 1 in practice is the same as the
one in [1]. The difference is that the new algorithm does
not require the exact knowledge of bounds (7) for the
norm of the dual solution in order to obtain a solution
with a given accuracy in accordance with (1).

It may seem that the obtained convergence rate of

O
(

1√
ε

)
contradicts to the lower bound [23], which says

that, in large-scale setting, the best complexity of a
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first-order method to solve a system of equations Ax = b
to an accuracy ε is Ω(1/ε). The explanation is that we
have made an additional assumption of simplicity of the
problem (4).

It is interesting to compare the estimates of The-
orem 1 with the approach described in [24], where the
authors consider only equality constraints. The num-
ber of iterations of their method until it stops is close
to ours and is

N = max
{√

18LR2/εeq,
√

18LR/εin

}
.

But this estimate does not give any information on the
number of iterations until the desired accuracy of the
solution is achieved.

Additionally, it is worth to compare results sug-
gested with the approach of regularization of the dual
function suggested in [16]. This approach also uses
restarts technique and the iteration amount is

Nreg =
√

2L(εeq + 2Rεin)/ε2
in ln(4L∆φ (εeq + 2Rεin)/ε

2
in),

where ∆φ is of the order of f (x0)− f ∗. As one can

see, Nreg ∼
√

1/ε ln(1/ε) and, hence within a loga-
rithmic factor worse than the estimate in Theorem
1. Also the approach of [16] does not guarantee that
f (x̂k)− f ∗ ≥ −εeq.
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