Вероятностный подход для задачи предсказания биологической активности ядерных рецепторов

Володин Сергей MФТИ, Skoltech sergei.volodin@phystech.edu

Аннотация

Решается задача предсказания биологической активности молекул протеинов (лиганд) с рецепторами: по признакам лиганда необходимо оценить вероятность связывания этой молекулы с одним или несколькими клеточными рецепторами и построить бинарный классификатор. Экспертные знания в области биохимии и фармакологии дают основания предполагать, что факты связывания одних и тех же молекул с различными рецепторами не независимы. В данной работе предлагается модель, позволяющая строить предсказания сразу для группы рецепторов, учитывая их схожесть. Модель оценивает условные вероятности принадлежности классам. В работе проводится вычислительный эксперимент на реальных данных, в ходе которого предложенная модель сравнивается с независимыми моделями в терминах нескольких функционалов качества.

1. Введение

Проблема предсказания биологической активности лигандов и рецепторов является актуальной задачей в области биохимии и фармакологии [1, 2, 3, 4, 5, 6]. Данная статья посвящена решению этой задачи методами машинного обучения.

Компьютерное моделирование взаимодействия молекул является распространенным методом предсказания биологической активности клеточных рецепторов [4, 1]. Однако такой способ требует знания точной структуры лиганд, которая не всегда известна. По этой причине развитие методов машинного обучения [7], позволяющих делать предсказания на основании только числовых признаков лиганд, является актуальным.

Существует два основных подхода к решению описанной задачи. В рамках первого из них для каждого клеточного рецептора строятся независимые модели. Так, например в [8, 5] применяется меПопова Мария *МФТИ* maria popova@phystech.edu

тод опорных векторов, в [2, 3] — нейронные сети, а в [9] — метод к ближайших соседей. Второй подход подразумевает построение одной модели для предсказания активности группы рецепторов. Такой подход позволяет строить более сложные модели, учитывающие информацию о схожести рецепторов [6]. В [10] проведен сравнительный анализ обоих подходов.

Таким образом, данная задача решается многими способами. Тем не менее, как показывает сопоставление результатов [10], лучшим оказывается второй подход, т.е. классификаторы, учитывающие при обучении все рецепторы сразу, а не независимо друг от друга. В данном случае это означает использование нескольких классификаторов и объеднение их в «цепочку» [11, 12, 13]. Как показывает практика, обучение нескольким задачам сразу дает существенный прирост в качестве конечного алгоритма по сравнению с рассмотрением этих задач по-отдельности [14, 15, 13].

В данной работе предлагается усовершенствованный метод classifier chains [13] — вероятностная модель последовательного вывода для предсказания биологической активности рецепторов [16, 14]. Предложенный алгоритм относится ко второму подходу, то есть позволяет строить предсказания для группы рецепторов, а также допускает добавление новых без необходимости повторного обучения. Проведен вычислительный эксперимент на реальных данных, в котором набор независимых моделей сравнивался с моделью последовательного вывода. Построенные модели сравнивались по нескольким критериям качества.

2. Постановка задачи классификации

Задана выборка $\mathfrak{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathscr{L}}, \mathscr{L} = \{1, \ldots, m\} - m$ пар объект-ответ. Каждый из объектов $\mathbf{x}_i \in \mathbb{R}^n$ — вектор действительных чисел. Объект может принадлежать каждому из l, что представляется вектором ответов $\mathbf{y}_i \in \{0, 1, \Box\}^l$, 1

означает принадлежность классу, а \Box означает пропуск в данных. Выборка разбита на обучающую и контрольную: $\mathfrak{D} = \mathfrak{L} \sqcup \mathfrak{T}$

Определяются **X**, **Y** — случайные величины. Считается, что между классами есть зависимости:

$$P(\mathbf{Y}|\mathbf{X}) \neq \prod_{j=1}^{l} P(y_j|\mathbf{X})$$

Моделью классификации называется функция

f:
$$\mathbf{W} \times \mathbf{X} \times \mathbf{Y} \rightarrow [0, 1],$$

где W — множество параметров, $w \in W$ — вектор параметров модели. Значение f — апостериорая вероятность ответов **у** при фиксированном **х**:

$$f(\mathbf{w}, \mathbf{x}, \mathbf{y}) = P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}; \mathbf{w})$$

Функция потерь для значения параметра **w** и подвыборки \mathscr{Z} определяется через функцию правдоподобия модельного распределения:

$$Q(\mathbf{f}|\mathbf{w}, \mathscr{Z}) = -\sum_{(\mathbf{x}, \mathbf{y}) \in \mathscr{Z}} \log \mathbf{f}(\mathbf{w}, \mathbf{x}, \mathbf{y}) P(\mathbf{X} = \mathbf{x})$$

Требуется найти вектор параметров $\mathbf{w}^* \in \mathbf{W}$, минимизирующий Q на обучающей выборке \mathfrak{L} :

$$\mathbf{w}^* = \arg\min_{\mathbf{w}\in\mathbf{W}} Q(\mathbf{f}|\mathbf{w}, \mathfrak{L})$$

Для вывода бинарного классификатора из вероятностной модели $P(\mathbf{y}|\mathbf{x})$ вводится функция потерь, т.е. штраф за ответ **y** при правильном ответе $\mathbf{y}' \in \mathbf{Y}$:

$$L\colon Y\times Y\to \mathbb{R}$$

Бинарный классификатор **h**: **X** → **Y** получается [14] при помощи Байесовского решающего правила:

$$\mathbf{h}(\mathbf{x}) = \arg\min_{\mathbf{y}\in\mathbf{Y}} \mathbb{E}_{\mathbf{Y}|\mathbf{X}} L(\mathbf{Y},\mathbf{y})$$

В качестве дополнительного критерия качества модели используются значения Subset Loss для векторов ответов, а также значения Hamming Loss и других метрик для каждого класса j на контрольной выборке \mathfrak{T} при 5 различных разбиениях.

Поскольку выборка содержит пропуски, разбиения должны быть построены таким образом, чтобы в каждой подвыборке было достаточное количество объектов с известным значением каждого признака.

3. Описание алгоритма

Таким образом, задача предсказания разбивается на два этапа:

- 1. Поиск параметра модели **w** максимизацией правдоподобия выборки на семействе распределений $P(\mathbf{y}|\mathbf{x};\mathbf{w})$. В результате решения задачи получается модель $P_{\mathbf{w}^*}(\mathbf{y}|\mathbf{x})$ как функция двух переменных
- 2. Поиск оптимального бинарного классификатора $h: \mathbf{X} \to \mathbf{Y}$, использующего найденное распределение $P(\mathbf{y}|\mathbf{x})$. Конкретная функция получается применением Байесовского решающего правила для каждого \mathbf{x} , подлежащего классификации. Конкретный классификатор зависит от выбранной функции потерь *L*.

4. Часть 1. Предлагаемый вид модели

Решим первую часть поставленной задачи, используя метод, описанный в [14].

Рассмотрим искомую величину

$$P(\mathbf{y}|\mathbf{x})$$

Докажем равенство

$$P(\mathbf{y}|\mathbf{x}) = P(y_1|\mathbf{x}) \prod_{i=2}^{l} P(y_i|y_1, \dots, y_{i-1}, \mathbf{x})$$

Рассмотрим величину

$$P(y_i|y_1,...,y_{i-1},\mathbf{x}) = \frac{P(y_1,...,y_i,\mathbf{x})}{P(y_1,...,y_{i-1},\mathbf{x})}$$

Подставим их в произведение, получим телескопическое произведение:

$$P(y_1|\mathbf{x})\prod_{i=2}^{l}P(y_i|y_1,...,y_{i-1},\mathbf{x}) =$$

$$= \frac{P(\mathbf{y}_{1}, \mathbf{x})}{P(\mathbf{x})} \frac{P(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{x})}{P(\mathbf{y}_{1}, \mathbf{x})} \cdot \dots \cdot \frac{P(y_{1}, \dots, y_{l}, \mathbf{x})}{P(y_{1}, \dots, y_{l-1}, \mathbf{x})} = P(\mathbf{y} | \mathbf{x}) \blacksquare$$

Таким образом, для моделирования вероятности $P(\mathbf{y}|\mathbf{x})$ можно использовать условные вероятности классов

$$P(y_1|\mathbf{x}), P(y_2|y_1, \mathbf{x})..., P(y_l|y_1, ..., y_{l-1}, \mathbf{x})$$

Каждую из l этих вероятностей будем оценивать при помощи логистической регрессии.

Обозначим

$$(x)_y = \begin{cases} x, & y = 1\\ 1 - x & y = 0 \end{cases}$$

Обозначим

$$g_i(y_1, ..., y_{i-1}, \mathbf{x}) = P(y_i = 1 | y_1, ..., y_{i-1}, \mathbf{x})$$

Получаем выражение вероятности $P(\mathbf{y}|\mathbf{x})$ через функции g_i :

$$P(\mathbf{y}|\mathbf{x}) = P(y_1|\mathbf{x}) \prod_{i=2}^{l} P(y_i|y_1, \dots, y_{i-1}, \mathbf{x}) = \prod_{i=1}^{l} (g_i(y_1, \dots, y_{i-1}, \mathbf{x}))_{y_i}$$

Вероятности

$$P(y_i = 1 | y_1, ..., y_{i-1}, \mathbf{x}) = g_i(y_1, ..., y_{i-1}, \mathbf{x})$$

предсказываются при помощи логистической регрессии, т.е.

$$g_i(y_1, \dots, y_{i-1}, \mathbf{x}) = \boldsymbol{\sigma}(\mathbf{w}_i^T || y_1 \dots y_{i-1} \mathbf{x}^T ||^T + w_i^0)$$

где

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Получаем семейство моделей

$$P(\mathbf{y}|\mathbf{x}) = (\sigma(\mathbf{w}_1^T \mathbf{x} + w_1^0))_{y_1} \prod_{i=2}^{l} (\sigma(\mathbf{w}_i^T || y_1 \dots y_{i-1} \mathbf{x}^T ||^T + w_i^0))_{y_i}$$

Таким образом, общая задача оптимизации \mathbf{w}^* распадается на l независимых оптимизационных задач максимизации правдоподобия, т.е. на обучение l логистических регрессий. *i*-я логистическая регрессия принимает в качестве признаков \mathbf{x} , а также ответы $y_1, ..., y_{i-1}$

Данный алгоритм называется PCC (Probabilistic Classifier Chain) [14]

5. Часть 2. Бинарный классификатор

Решим вторую часть задачи, т.е. построим бинарный классификатор по известному распределению $P(\mathbf{y}|\mathbf{x})$, выбирая некоторую функцию потерь (см. [14]).

При фиксированной функции потерь L и объекте $\mathbf{x} \in \mathbf{X}$ оптимальное предсказание $\mathbf{h}(\mathbf{x}) \in \mathbf{Y}$ в соответствии с Байесовским решающим правилом имеет вид [14]:

$$\mathbf{h}(\mathbf{x}) = \arg\min_{\mathbf{y}\in\mathbf{Y}} \mathbb{E}_{\mathbf{Y}|\mathbf{X}} L(\mathbf{Y}, \mathbf{y})$$

В качестве примеров рассмотрим следующие функции потерь $L(\mathbf{y}, \mathbf{y}')$ и приведем полученный алгоритм $h(\mathbf{x})$ [14]:

- 1. Hamming Loss. Получаем $h_i(\mathbf{x}) = \operatorname{sign}(P(y_i = 1|\mathbf{x}) \frac{1}{2})$
- 2. Subset 0/1 Loss. Получаем $h(\mathbf{x}) = \arg \max_{y \in Y} P(\mathbf{y} | \mathbf{x})$
- 3. Rank Loss. Получаем $f_i(\mathbf{x}) = P(y_i = 1 | \mathbf{x})$

Используемая вероятность $P(y_i = 1 | \mathbf{x})$ может быть получена из известного распределения $P(\mathbf{y} | \mathbf{x})$ по формуле полной вероятности:

$$P(y_i = 1 | \mathbf{x}) = \sum_{y \in \{0,1\}^l} [y_i = 1] P(\mathbf{y} | \mathbf{x})$$

Таким образом, искомые вероятности выражаются через известное распределение $P(\mathbf{y}|\mathbf{x})$.

6. Часть 3. Работа с пропусками

Приведенный выше алгоритм РСС построения $P(\mathbf{y}|\mathbf{x})$ по имеющейся обучающей выборке неприменим для выборок, для которых в ответах могут содержаться пропуски: $y_i \in \{0, 1, \Box\}$. Эта проблема решается следующим образом:

- 1. Логистические регрессии 1,...,*l* обучаются последовательно
- 2. Для обучения *i*-й логистической регрессии берутся объекты с известным значением признака *y_i*
- 3. Предыдущие неизвестные значения признаков y₁,.., y_{*i*-1} предсказываются частично уже построенным РСС для классов 1,..., *i* – 1.

6.1. Алгоритмы

Algorithm 1 Обучение РСС для выборок без пропусков

Require: Обучающая выборка $\mathfrak{L} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in L}$ **Ensure:** Векторы $\mathbf{w}_i \in \mathbb{R}^{n+i-1}, i \in \overline{1, l}$

- 1: $u_j \leftarrow j$ -й столбец матрицы $y_{ij}, j \in \overline{1, l}$
- 2: for $i = 1, \ldots, l$ do
- 3: $X^i \leftarrow ||Xy_1...y_{i-1}||^{\Box}$. Эта матрица имеет строки X^i_i
- 4: $\mathbf{w}_i = \arg \max \prod_{j \in L} (\boldsymbol{\sigma}(\mathbf{w}_i^T X_j^i))_{y_{ij}}$ обучение логистической регрессии
- 5: end for
- 6: return $\mathbf{w}_1, \dots, \mathbf{w}_l$

Algorithm 2 Предсказание вероятности $P(\mathbf{y}|\mathbf{x})$ для пары объект-ответ

Require: Объект $\mathbf{x} \in \mathbb{R}^n$, векторы \mathbf{w}_i , пороги w_i^0 , вектор $\mathbf{y} \in \{0, 1\}^m$

Епѕиге: Условная вероятность $P(\mathbf{y}|\mathbf{x}) \in [0,1]$

- 1: $P \leftarrow 1$
- 2: **for** i = 1, ..., l **do**
- 3: $\mathbf{x}' \leftarrow ||\mathbf{x}^T y_1 \dots y_{i-1}||^{\Box T}$
- 4: $P \leftarrow P \cdot (\boldsymbol{\sigma}(\mathbf{w}_i^T \mathbf{x}' + w_i^0))_{y_i}$
- 5: end for
- 6: return P

7. Вычислительный эксперимент

Целью эксперимента является получение характеристик предложенного алгоритма и сравнение результатов с базовым алгоритмом. Также в ходе эксперимента находятся значения гиперпараметров исходя из оптимизации функций ошибок.

Базовый алгоритм использует подход Binary Relevance [14], в котором зависимости между классами не учитываются. Таким образом, алгоритм представляет собой *l* независимых логистических регрессий, по одному классификатору для каждого класса. Предлагаемый алгоритм, PCC, учитывает зависимости между классами.

Для решения второй части задачи в предлагаемом алгоритме рассматриваются следующие функции потерь:

- 1. Subset 0/1 loss: $L(\mathbf{y}, \mathbf{y}') = [\mathbf{y} \neq \mathbf{y}']$
- 2. Hamming loss: $L(\mathbf{y}, \mathbf{y}') = \sum_{i=1}^{l} [y_i \neq y'_i]$
- 3. Функционал $L(\mathbf{y}, \mathbf{y}') = q\left(\sum_{i=1}^{l} [y_i \neq y'_i]\right)$, где q(t) задана в натуральных точках $t \in \overline{0, l}$ и подлежит оптимизации.

Для полученных результатов бинарных классификаторов также сравниваются значения Precision, Recall, Hamming loss и AUC для каждого класса, а также Hamming Loss и Subset Loss вцелом. Для оценки стандартного отклонения используется 5-fold разбиение. Эксперимент проведен на модельных и реальных данных.

7.1. Модельные данные

Используется следующая вероятностная модель для генерации выборки:

Выборка $\mathfrak{D} = \{(x_i, \mathbf{y}_i)\}_{i \in \mathscr{L}}, \mathscr{L} = \{1, \ldots, m\} - m$ пар объект-ответ. Каждый из объектов $x_i \in [-1.5, 1.5]$ действительное число. Объект может принадлежать каждому из l = 3 классов, что представляется вектором ответов $\mathbf{y}_i \in \{0, 1\}^l$, 1 означает принадлежность классу. В модельных данных пропуски в ответах отсутствуют.

Вероятность принадлежности объекта x к классам $\mathbf{y} \in \{0,1\}^3 P(\mathbf{y}|x)$ задается по формуле [14]:

$$P(y_1, y_2, y_3 | x) = (f_1(x))_{y_1} (f_2(x, y_1))_{y_2} (f_3(x, y_1, y_2))_{y_3}$$

где f_1, f_2, f_3 заданы следующим образом:

$$f_1(x) = \sigma(x) f_2(x, y_1) = \sigma(x - 2y_1 + 1) f_3(x, y_1, y_2) = \sigma(x + 12y_1 - 2y_2 - 11)$$

Выборка содержит 500 объектов. Генерация производится следующим образом:

)

- 1. Выбирается *x* ~ *u*[-1.5, 1.5] из равномерного распределения
- 2. Выбирается **у** для данного *х* в соответствии с формулой.

Полученные плотности $P(\mathbf{y}|x)$ изображены на графике 2.

Для сравнения алгоритмов использовались следующие метрики: $AUC_i - AUC$ для каждого класса, H_i — Hamming Loss для каждого класса, P_i — Precision, R_i — Recall, S — Subset Loss, H — общий Hamming Loss.

Для контроля переобучения используется 5-fold кросс-валидация.

В качестве функций потерь для РСС использовались следующие: Н (Hamming Loss), S (Subset Loss), а также М — функция вида

$$L(\mathbf{y},\mathbf{y}') = q\left(\sum_{i=1}^{l} [y_i \neq y'_i]\right),$$

Функция *q* определена в точках $\overline{0,l} = \overline{0,3}$. Проведена оптимизация *q* по различным метрикам итогового алгоритма. Значения *q* в точках (0,1,2,3) имеют вид (0,*a*₁,*a*₂,10), где *a*₁,*a*₂ подлежат перебору.

Оптимальная функция *q* зависит от метрики и класса, для которого вычисляется данная метрика.

Показано, что для оптимизации Subset Loss $a_1 = 10, a_2 = 10$, а для оптимизации суммарного Hamming Loss $a_1 = 2, a_2 = 5$. В качестве q_M взята последняя.

Результаты представлены в таблице 2. Наблюдается серьезное улучшение в Subset Loss для РСС (S). Остальные изменения в пределах погрешности.

График 2 показывает зависимость функции ошибки Subset Loss на обучающей и контрольной выборке от мощности обучающей выборки. Видно, что при $|\mathfrak{L}| < 100$ ошибка на контроле сильно больше ошибки на обучении, т.е. возникает переобучение. При $|\mathfrak{L}| \gtrsim 150$ этот эффект уходит, и ошибки становятся примерно равны. На графике 3 представлена зависимость Subset Loss на обучении и контроле от коэффициента регуляризации *С*. В силу тривиальности выборки Subset Loss слабо зависит от этого коэффициента.

Графики 3 показывают время выполнения алгоритмов обучения и предсказания в зависимости от размера выборки. Оценим время предсказания как $2^{2l} \cdot n$, где n — размер выборки, l — количество классов. По n эта зависимость линейна.

7.2. Реальные данные

Эксперимент проведен на реальных данных, имеющих двойное происхождение. Объектами являются лиганды, их признаки \mathbf{x}_i смоделированы при помощи специальной программы. Ответы $\mathbf{y}_i =$ (y_{i1},...,y_{ii}) являются результатами биохимических экспериментов, показывающих, связывается ли данный лиганд с рецептором *j*. Пропуск в ответах означает, что эксперимент либо не был проведен, либо не позволяет с достаточной уверенностью говорить о каком-либо результате. Каждый объект имеет 165 признаков. Признаки являются химическими параметрами молекулы. В выборке содержится 8513 объектов, количество объектов с измеренным ответом *j* составляет около половины. В таблице 1 указано точное распределение ответов по классам. График 3 показывает распределение объектов по значениям всех 165 признаков. Видно, что большинство распределений унимодальные.

График 1 показывает распределение признаков по значению $R^2 = 1 - \frac{1}{\text{VIF}}$. Видно, что данные обладают высокой мультиколлинеарностью (большинство признаков имеют R^2 , близкий к 1)

На графиках (4) показаны ROC-кривые классов для одного из разбиений, построенные по предсказаниям Binary Relevance, а также значение функционала AUC. В таблице 2 приведено сравнение метода Binary Relevance с результатами из [17], для получения которых использовались те же данные, что и в данной работе. Сравнение результатов показывает, что логистическая регрессия уступает в качестве классификации методу Random Forest. Для некоторых рецепторов эта разница значительна.

Для определения эффективности методов вычисляются значения метрик Hamming Loss, Subset Loss, Precision, Recall для каждого из разбиений $\mathfrak{D} = \mathfrak{L} \sqcup \mathfrak{T}$ на тестовую и контрольную выборку. Вычисляются средние значения и стандартные отклонения. Разбиения выполнены по методу Shuffle Split с размером тестовой выборки 0.1 и количеством разбиений 5 из-за разреженности данных. Используются функции потерь для PCC, аналогичные таковым для модельных данных. В эксперименте использованы только данные по рецепторам NR-AhR, NR-AR-LBD, NR-Aromatase. Использованы только объекты со всеми тремя известными ответами.

Результаты сравнения РСС и ВR представлены в таблице 4. Как и для модельных данных, заметно существенное улучшения Subset Loss для РСС (S). Также имеется незначительное улучшение Hamming Loss (H) для класса 2 (NR-AR-LBD).

8. Заключение

В работе применен алгоритм Probabilistic Classifier Chains для решения задачи предсказания взаимодействия рецепторов и лигандов. Алгоритм сравнивается с базовым алгоритмом, не учитывающим зависимости между классами. Вычислительный эксперимент показал, что как для модельных, так и для реальных данных РСС позволяет существенно улучшить показатели Subset Loss, т.е. качество предсказания всего вектора. При использовании Hamming Loss результаты сходны с результатами независимого классификатора. Предложена функция потерь для алгоритма РСС, позволяющая незначительно улучшить показатели Hamming Loss для отдельных классов.

(а) Гистограмма R^2 для реальных данных

Рис. 1: Реальные данные

Таблица 2: Значение AUC для различных рецепторов и моделей классификации

Рецептор	Binary Relevance	Random Forest [17]
NR-AhR	0.83 ± 0.03	0.93
NR-AR-LBD	0.86 ± 0.08	0.88
NR-AR	0.83 ± 0.09	0.83
SR-MMP	0.87 ± 0.03	0.95
NR-ER	0.78 ± 0.04	0.81
SR-HSE	0.79 ± 0.04	0.86
SR-p53	0.79 ± 0.07	0.88
NR-PPAR-gamma	0.79 ± 0.04	0.86
SR-ARE	0.78 ± 0.02	0.84
NR-Aromatase	0.81 ± 0.05	0.84
SR-ATAD5	0.81 ± 0.06	0.83
NR-ER-LBD	0.80 ± 0.07	0.83

(a) Распределение объектов по значениям признаков для реальных данных

Рис. 3: Распределение объектов по значениям признаков

Рецептор	Неизвестно	Не связывается	Связывается
NR-AhR	3413 (40%)	4503 (52%)	597 (7%)
NR-AR-LBD	3213 (37%)	5129 (60%)	171 (2%)
NR-AR	2904 (34%)	5398 (63%)	211 (2%)
SR-MMP	3925 (46%)	3870 (45%)	718 (8%)
NR-ER	3746 (44%)	4232 (49%)	535 (6%)
SR-HSE	3309 (38%)	4961 (58%)	243 (2%)
SR-p53	3174 (37%)	5029 (59%)	310 (3%)
NR-PPAR-gamma	3393 (39%)	4987 (58%)	133 (1%)
SR-ARE	3791 (44%)	4029 (47%)	693 (8%)
NR-Aromatase	4544 (53%)	3835 (45%)	134 (1%)
SR-ATAD5	2951 (34%)	5360 (62%)	202 (2%)
NR-ER-LBD	3107 (36%)	5168 (60%)	238 (2%)

Таблица 1: Количество связывающихся с рецепторами лигандов

Таблица 3: Сравнение алгоритмов на модельных данных

Метрика	BR	PCC(H)	PCC(M)	PCC(S)
AUC 1	0.69 ± 0.03	0.69 ± 0.03	0.69 ± 0.02	0.69 ± 0.05
AUC 2	0.55 ± 0.04	0.55 ± 0.04	0.56 ± 0.03	0.51 ± 0.04
AUC 3	0.65 ± 0.04	0.66 ± 0.02	0.64 ± 0.04	0.64 ± 0.04
Η	0.37 ± 0.01	0.36 ± 0.02	0.36 ± 0.02	0.38 ± 0.04
H 1	0.31 ± 0.03	0.31 ± 0.03	0.31 ± 0.02	0.31 ± 0.05
H 2	0.45 ± 0.04	0.45 ± 0.04	0.45 ± 0.03	0.49 ± 0.05
H 3	0.34 ± 0.03	0.30 ± 0.03	0.31 ± 0.04	0.34 ± 0.03
P 1	0.70 ± 0.06	0.70 ± 0.06	0.73 ± 0.05	0.64 ± 0.05
P 2	0.55 ± 0.04	0.51 ± 0.01	0.47 ± 0.04	0.46 ± 0.07
P 3	0.70 ± 0.06	0.56 ± 0.05	0.50 ± 0.10	0.66 ± 0.05
R 1	0.68 ± 0.04	0.68 ± 0.04	0.68 ± 0.03	0.71 ± 0.05
R 2	0.52 ± 0.10	0.53 ± 0.10	0.54 ± 0.09	0.48 ± 0.05
R 3	0.48 ± 0.10	0.53 ± 0.06	0.52 ± 0.07	0.49 ± 0.09
\mathbf{S}	0.78 ± 0.03	0.77 ± 0.05	0.77 ± 0.05	0.62 ± 0.06

Таблица 4: Сравнение алгоритмов на реальных данных. Рецептор
ы $1,2,3=\mathrm{NR-AhR},\mathrm{NR-AR-LBD},\mathrm{NR-Aromatase}$

Метрика	BR	PCC (H)	PCC (M)	PCC (S)
			$\frac{100(10)}{0.57+0.00}$	
AUC I	0.58 ± 0.03	0.58 ± 0.03	0.57 ± 0.02	0.58 ± 0.02
AUC 2	0.61 ± 0.06	0.61 ± 0.06	0.62 ± 0.06	0.61 ± 0.05
AUC 3	0.55 ± 0.01	0.54 ± 0.01	0.53 ± 0.01	0.54 ± 0.01
Η	0.15 ± 0.01	0.17 ± 0.01	0.19 ± 0.02	0.17 ± 0.02
H 1	0.21 ± 0.03	0.21 ± 0.03	0.24 ± 0.02	0.21 ± 0.03
H 2	0.05 ± 0.01	0.04 ± 0.01	0.04 ± 0.01	0.04 ± 0.01
H 3	0.20 ± 0.02	0.25 ± 0.01	0.29 ± 0.03	0.25 ± 0.03
P 1	0.79 ± 0.10	0.79 ± 0.10	0.79 ± 0.10	0.82 ± 0.10
P 2	0.91 ± 0.10	0.88 ± 0.10	0.91 ± 0.10	0.88 ± 0.10
P 3	0.76 ± 0.07	0.82 ± 0.09	0.78 ± 0.09	0.82 ± 0.08
R 1	0.17 ± 0.06	0.17 ± 0.06	0.15 ± 0.04	0.18 ± 0.05
R 2	0.22 ± 0.10	0.23 ± 0.10	0.24 ± 0.10	0.23 ± 0.10
R 3	0.10 ± 0.02	0.09 ± 0.02	0.07 ± 0.02	0.09 ± 0.02
S	0.32 ± 0.02	0.34 ± 0.02	0.46 ± 0.03	0.30 ± 0.03

Рис. 4: ROC-кривая и значения функционала AUC для классов 1-12, метод Binary Relevance

(а) Плотность модельных данных

(b) Зависимость ошибки на обучении и контроле от размера обучающей выборки

(c) Зависимость ошибки на обучении и контроле от коэффициента регуляризации

(е) Время предсказания в зависимости от размера выборки

Рис. 2: Модельные данные

(d) Время обучения в зависимости от размера выборки

Список литературы

- R. DVORSKÝ V HORŇÁK and E. ŠTURDÍK. Receptor-ligand interaction and molecular modelling.
- [2] Tong Q Xie XQ Myint KZ, Wang L. Molecular fingerprint-based artificial neural networks qsar for ligand biological activity predictions. *Molecular Pharmaceutics*, 2012.
- [3] Xie XQ Myint KZ. Ligand biological activity predictions using fingerprint-based artificial neural networks (fann-qsar). *Methods Mol. Biol.*, 2015.
- [4] Bonnie Berger Vinay Pulim, Jadwiga Bienkowska. Lthreader: Prediction of extracellular ligand-receptor interactions in cytokines using localized threading. *Protein Science*, 2008.
- [5] Changhong Zhou Wenjun Zhang Zhengjun Cheng, Yuntao Zhang and Shibo Gao. Classification of 5-ht1a receptor ligands on the basis of their binding affinities by using pso-adaboost-svm.
- [6] Laurent Jacob and Jean-Philippe Vert. Protein-ligand interaction prediction: an improved chemogenomics approach. *BIOINFORMATICS*, 2008.
- [7] Peter Willett. Chemical similarity searching. Journal of Chemical Information and Computer Sciences, 1998.
- [8] Yusuke Komiyama et al. Masayuki Yarimizu, Cao Wei. Tyrosine kinase ligand-receptor pair prediction by using support vector machine. Advances in Bioinformatics, 2015.
- [9] Nagamani Sukumar Curt Breneman Scott Oloff[†], Shuxing Zhang and Alexander Tropsha. Chemometric analysis of ligand receptor complementarity: Identifying complementary ligands based on receptor information (colibri). J. Chem. Inf. Model., 2006.
- [10] M. Popova. Feature selection and multi-task prediction of biological activity for nuclear receptors. 11(1):111– 112, 2015.
- [11] Jose Barranqueroa José Ramón Quevedoa Juan José del Coza Eyke Hüllermeierb Elena Montañesa, Robin Sengeb. Dependent binary relevance models for multi-label classification. *Pattern Recognition*, 2013.
- [12] Ivor W. Tsang Weiwei Liu. On the optimality of classifier chain for multi-label classification.
- [13] Geoff Holmes Eibe Frank Jesse Read, Bernhard Pfahringer. Classifier chains for multilabel classification.
- [14] Eyke H.0 Krzysztof Dembczynski, Weiwei Cheng. Bayes optimal multilabel classification via probabilistic classifier chains. 2010.
- [15] Haytham Elghazel Maxime Gasse, Alex Aussem. On the optimality of multi-label classification under subset zero-one loss for distributions satisfying the composition property. 2015.
- [16] Eduardo F. Morales Pablo Hernandez-Leal Julio H. Zaragoza Pedro Larrañaga L. Enrique Sucar, Concha Bielza. Multi-label classification with bayesian network-based chain classifiers.
- [17] Olexandr Isayev Sherif Farag Stephen J. Capuzzi, Regina Politi and Alexander Tropsha. Qsar modeling of tox21 challenge stress response and nuclear receptor signaling toxicity assays.