
Nonlinear adaptive method of matrix completion on partial
observations

Gorodnitskii Oleg
Moscow Institute of Physics and Technology

gorodnitskii@phystech.edu

Trofimov Mikhaill
Moscow Institute of Physics and Technology

mikhail.trofimov@phystech.edu

Abstract

Matrix completion is a problem of filling in missing
entries of a partially observed matrix. Such problems
arise in fields like recommendation systems and click-
through rate prediction. There are several commonly
used approaches to this problem, such as classical
low-rank approximation (including Alternating Mini-
mization) or probabilistic matrix factorization (PMF).
All classical approaches approximate the entries of the
matrix by a fixed representation function and focus only
on learning latent (hidden) variables. In this article,
we replace this fixed function with the parametrized
one. That will allow us to tune both parametrization
of the function and latent variables from data. For
algorithm validation MovieLens dataset is used.

Index Terms — Matrix Completion, Low-rank,
Neural Networks, Deep Learning, Word Embedding

1. Introduction

Getting a matrix approximation of a partial
matrix of observations is one of the fundamental tasks
in machine learning . As it is shown in [1] matrix
completion has become one of the leading techniques
for recommender systems, where one must handle with
large datasets. Low-rank is a classical technique for
the task of matrix completion. In this approach given
matrix M ∈Rn×m (we will refer to M as a target matrix
) is considered as a matrix of a fixed rank k, which
means it can be represented as a multiplication of two
matrices U ∈ Rn×k and V ∈ Rk×m. So each element of
M is calculated as an inner product of a particular row
of U and column of V. The task is to find U,V, which
minimize error over an observed part of a matrix.
Low-rank approach has received many modifications
after its invention and some of them are listed below.

Low-rank approach allows to reduce task of matrix
completion to the optimization task of finding U,V.

But this is a not convex problem, if optimization is
carried out simultaneously on both matrices. The [1]
describes a techinque of an Alternating Minimiza-
tion (AM). In the AM the target matrix is written as
a multiplication of two unknown matrices. Algorithm
alternates between optimizing first matrix over fixed
second and vise versa. As it is proved in [5] in each
case optimization task is convex so it can be effectively
solved using different optimization methods.

Because of a good scalability similar techique
can be used in biology, where large datasets are
common. According to [2] in gene expression analysis
the problem of matrix completion is crucial, because
many algorithms require a complete matrix of gene
array values as an input. Troyanskaya [2] describes an
application of an Iterative SVD – specially modified
singular value decomposition, in a task of completion
of DNA microarrays.

In [3] Salakhutdinov suggests different extension of
the low-rank model via probabilistic approach. Article
represents a Probabilistic Matrix Factorization
(PMF) technique. In this approach it is assumed
that all enteries of the target matrix are independent
gaussians with common variance and means given by
multiplication of two unknown matrices of fixed rank.
PMF can be easly imporved by adding systematic
biases for each row and column and one global bias, as
it shown in [5].

Another approach, which extends an idea of
the low-rank approximation, described in [7].Article
represents an idea of Local Low-rank approximation.
Instead of assuming that the target matrix has a
low rank globally it is assumed that it behaves as a
low-rank matrix in the locality of certain combinations
of rows and columns. Therefore several low-rank
approximations are constructed, each being accurate in
a particular region of the matrix. According to [8] local
low-rank modelling significantly outperformed global
low-rank modeling in the context of recommender

64

systems

All mentioned models used matrix factorization
through representations of rows and columns. In [6]
a significantly different model of Co-clustering is
proposed. Its main idea can be described in terms of
famous Netflix Prize competition. Traditional matrix
factorization assumes that a movie preference is based
on a weighted sum of preferences for different genres,
with the movie properities being represented in a
vectorial form. Co-clustering, on the other hand,
assumes there exists some ’correct’ partition of movies
and users on groups. Objects in a same group share
similar attributes.

In all low-rank-based approaches a fixed function
(also called a ”representation function”) of two vectors
is used to obtain elements of the target matrix. It is
selected by an experimenter before an experiment. We
consider this funcion as a dependent on some param-
eters which are determined in a process of learning.
Explicit parametrization of the representation function
can be expressed as a neural network. So one obtains
optimal parameters of the function through neural
network learning. This can lead to a better adaptation
of the method to a particular task and impove the
quality of recovery.

2. Problem Statement

Let us give some definitions:

Representation w ∈Rk – is a vector of variables
(sometimes called ”latent” variables) that describes one
of the dimensions of the matrix. Each row and column
has its own unqiue representation, associated with it.
All representations, that correspond to the same dimen-
sion, have same length, value of which is determined
by a researcher before the experiment. Representations
that correspond to different dimension can have differ-
ent lengths.

Representation function F : Rk+l 7→ Y – is a
function of two representations which provides a map-
ping from the space of representations to Y⊂ R

Epoch – is a one full training cycle of a neural net-
work on a training set. Epoch is finished when all sam-
ples from the training set were used to update weights
of the neural network.

Dense layer – is a fully connected layer of a neu-
ral network, all neurons of which have connections with
all neurons of a previous layer.

Hidden layer – is a dense layer, located between
input and output layers.

Depth of a neural network – number of hidden
layers in a neural network (excluding input and output

layers)
Batch – is a subset of the training set. All batches

share same size.
Batch learning – is a learning model in which

a neural netowork is trained on a sequence of batches.
During a single batch processing all parameters of the
network stay constant and are updated only after whole
batch is processed.

Dropout [13] – is a technique in the neural net-
work learning which is in blocking outputs from some
randomly chosen subset of neurons from input and hid-
den layers. Relative size of the blocked subset is deter-
mined by a dropout parameter p. In the case of batch
learning, during processing of a single batch the blocked
subset stays constant. As shown in [13] this technique
helps to make a neural network more robust to the dam-
age of the input and reduces overfitting.

Flatten layer – is a special layer of a neu-
ral network that flattens all its input data into one-
dimensional vectors and concatenates them into a sin-
gle vector. Flatten layer always outputs a single one-
dimensional vector.

Per-dimensional optimization method – is
an optimization method that uses different parameters
for operations with different dimensions of a parameter
vector. As an example, a per-dimensional optimization
method can use different learning rates for different
dimensions.

An unknown matrix M ∈ Rm×n and a set of its
known elements (observations): O = {(xi,yi)}l

i=1, where
xi ∈ [1, ...,m]× [1, ...,n],yi ∈ Y ⊂ R are given. It is re-
quired to find an approximation A of the matrix M, that
minimizes quadratic element-wise deviation on some
Dtest = {(xi,yi)}h

i=1:

A = argmin
A

∑
(xi,yi)∈Dtest

(Axi − yi)
2 (1)

As a main dataset we use MovieLens 100K dataset
[10]. It is given in a form of set of (user-movie, rank)
pairs: D = {(xi,yi)}l

i=1, where xi ∈ [1, ...,m]× [1, ...,n],
yi ∈ {1,2,3,4,5} correspond to user-movie pair and rat-
ing respectively. Dataset is divided into L train-test
sections {Di

train,Di
test}L

i=1. A loss of model is estimated
as an averaged quadratic loss over all train-test sections

Q(A) =
1
L

L

∑
i=1

∑
(x j ,y j)∈Di

test

1
|D|test

(Ax j − y j)
2 (2)

Each train-test section is obtained by splitting
dataset randomly onto two parts, so that |D|train =
(L−1)|D|test and sets of users and movies of Dtest were
nested into corresponding sets of Dtrain. Choice of the
quadratic loss as the loss function is due to the fact
that we predict rating, in other words, we solve the

65

problem of regression and use a classical loss function
for the regression problems. For the experiment with
the MovieLens 100K dataset L is set to 5.

3. Basic Experiment

Main purpose of the basic experiment is to obtain
results of the traditional (baseline) methods on the
main dataset. Further, these results will be compared
with the results of the method, presented in this artcle.
Classical low-rank and Iterative SVD were chosen as
traditional methods.

In the low-rank method target matrix M is consid-
ered as a matrix of a fixed rank k, i.e. it can be repre-
sented as a multiplication of two matrices U ∈ Rn×k and
V ∈ Rm×k: M = UVT . In another words, each element
of the resulting matrix is calculated as inner product of
particular representations, related to the corresponding
row and column of the M. This leads to the optimiza-
tion task of finding

U,V = argmin
U,V

∑
(xi,yi)∈Dtest

(< ux1
i
,vx2

i
>−yi)

2+

l1(‖ux1
i
‖1 +‖vx2

i
‖1)+ l2(‖ux1

i
‖2 +‖vx2

i
‖2)

(3)

where ux1
i
,vx2

i
are rows of the U and V respectively.

and l1, l2 are l1, l2 norms regularization parameters. For
the optimization task solving ”Adam” [11] algorithm
from Downhill 0.32 package is used.

The Iterative SVD method can be described in a
the following way(Algorithm 1): because SVD can only
be performed over complete matrices, in the first step
all missing values of M are replaced with the row av-
erages. In such way a matrix A0 is obtained. After
that, a truncated SVD [8] is performed over A0 and all
values of A0, that were missed in M, are replaced with
the values obtained from the truncated SVD of A0. In
each further step a procedure of truncated SVD and re-
placement of missing values is performed on a matrix,
obtained in a previous step.

Main datatable [10] consists of 943 users with at
least 20 rated movies among of 1682 total from Movie-
lens 100K dataset. Users were selected at random for
inclusion. Ratings are made on a 5-star scale. Zero rat-
ing denotes absence of vote.
Results of the low-rank method and Iterative SVD on
first 20 ranks are presented in a table 1 and can be seen
on graphics 4, 2. Vertical blue bars are representing
standard deviation of the error over 5 folds.

4. Solution

In this section we provide a description for the new
method (we will call it Neural Network Matrix Factor-

Algoritm 1 Iterative SVD

Iterative SVD

In: M;
Out: A;

rank = k; {Initialize rank}
for i = 1, . . . ,n

for j = 1, . . . ,m
if ((i, j),Mi, j) ∈O then

A0
i, j = Mi, j

else
A0

i, j = 1
m ∑k:((i, j),Mi, j)∈O Mi,k

i = 0
while Q(Ai) > eps

Ai+1 = TruncatedSV D(Ai,rank = k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Rank k

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65

M
S
E

Low-rank (MovieLens 100K)

Fig. 1. Low-rank

ization or NNMF). As a low-rank method NNMF asso-
ciates representations with each row and column of the
target matrix. Representations for different dimensions
can have different lengths. Each element of the matrix
is considered as a value of representation function F at
a corresponding representations wi,wj:

ai, j = F(wi,wj) (4)

But, unlike in low-rank, function F is not fixed
(for low-rank F(x,y) =< x,y >). In NNMF approach
F is considered as a nonlinear composition of linear
functions. Arbitrary continuous function can be
uniformly approximated (with any degree of accuracy)
by superposition of add operation and nonlinear
function of a single argument [9]. Therefore F can
uniformly approximate arbitrary continious function.
Techincally neural networks with nonlinear activation
function are exactly a superposition of addition and
nonlinear function of a single argument. We replace
fixed F with a neural network. Because the neural
network has a fixed structure, by choosing it we

66

Table 1. Dependence of MSE from rank

Rank Matrix factorization Iterative SVD
1 1.562 0.910
2 1.111 0.895
3 1.010 0.931
4 0.970 0.996
5 0.950 1.059
6 0.949 1.146
7 0.940 1.258
8 0.948 1.369
9 0.947 1.559
10 0.956 1.675
11 0.968 1.740
12 0.978 1.886
13 1.000 1.996
14 1.017 2.107
15 1.040 2.216
16 1.052 2.321
17 1.072 2.490
18 1.113 2.573
19 1.119 2.693
20 1.148 2.773

choose some particular class of functions. During
neural network training we are, actually, looking
for a function, in the fixed class, that fits best to a
particular task. At the same time representations
for each row and column are learned. Simultaneous
learning of the representations and the neural net-
work allows to consider them as a single structure,
which will be reflected at the technical implementation.

Model was implemented in Python language, using
Theano framework [14], [15] and Lasagne library [18] –
library for neural networks building and training. As
an input, network gets indexes of a row and a column of
an element to be calculated. Then indices are passed to
an embedding layer. Word embedding is a technique,
widely used in natural language processing (NLP) and
a main part of Google’s Word2Vec technology [17],
[16]. This technique provides a mapping from a finite
set of objects (words) S to continious space of vectors
f : S→ Rn. Technically it is implemented by matching
between some finite set of numbers and a set of vectors,
both sets sharing the same cardinality. Consider this
cardinality as a m and a dimensionality of the vectors’
space as a n. Then a patricular embedding can be
written in a from of a matrix W ∈Rm×n, where to each
number a particulr vector (row in W) is matched. We
are using embedding layer’s weights matrix as W, stor-
ing representations in it. For the two provided indexes
of the row and column embedding layer will output
two vectors - representations of the corresponding row

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Rank k

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M
S
E

Iterative SVD (MovieLens 100K)

Fig. 2. ISVD

Fig. 3. Example of parametrization

and column. Weights of W are just a part of the neural
network. That allows us to combine representations
and neural network into a single structure and learn
them from the data simultaneously.
Vectors from the embedding layer then pass into a
flatten layer, which concatenates them and passes them
as an input to a sequence of the dense layers. Exacly
this sequence of the dense layers form main part of the
neural network and its structure determines the class
of functions in which the representation function F will
be built. Last dense layer of the sequence outputs the
answer – element of the matrix, that corresponds to
the provided pair of indexes.

5. Primary experiment (Test on Movie-
Lens 100K Data Set)

The main purpose of the primary experiment is to
compare results of the NNMF method with the results

67

Fig. 4. Scheme of NN

10 20 30 40 50 60 70 80 90 100 110

Rank k

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

M
S
E

NNMF (MovieLens 100K)

Fig. 5. NNMF

of the basic methods.
For the MovieLens 100K dataset, parameters of NNMF
(parameters of network: depth, number of neurons in
hidden layers, dropout, learning rate, regularization pa-
rameters, activation function and optimization method)
were selected by brute force during cross-validation on
5 folds.

1. Depth : 3

2. Number of neurons in hidden layers: 256

3. Dropout parameter p: 0.3 [13]

4. Activation function: Rectifier

5. Optimization method: Adadelta [12]

6. Learning rate η : 8∗10−3

Because the shape of the datatable in MovieLens
100K is close to square, all representations share
same lenght. After the parameters were chosen,
NNMF was tested on the dataset with the length
of representations (equal to the rank k in low-rank

interpretation) in a range from 80 to 120. As a
stop criterion an early stopping has been chosen: it
stops learning process after the epoch with number
[Stop epoch] if an error after the epoch with the num-
ber [Stop epoch - early stopping parameter]
was lower. The error after
[Stop epoch - early stopping parameter] epoch is
considered as an error of NNMF for the particular rank.

Low Rank Iterative SVD NNMF
Best MSE 0.94 0.895 0.841
Rank 7 2 95
SD 0.02 0.01 0.01

6. Conclusion

This paper represented a Neural Network Matrix
Factorization - a new method for solving the problem
of Matrix Completion. The method showed good qual-
ity of solution within frames of MSE metrics and out-
performed both baseline algorithms. Besides, method
easily generalizes on arbitrary dimensionality.

Further researches are possible with usage of addi-
tional technics as compositions, convolution neural net-
works (CNN) and different quality metrics as nDCG,
MAP, etc.

All materials needed for conducting an ex-
periment can be found at https://sourceforge.

net/p/mlalgorithms/code/HEAD/tree/Group374/

Gorodnitskii2016AdaptiveApproximation/.

References

[1] Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon, Paral-
lel Matrix Factorization for Recommender System, 2013.

[2] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat
Brown, Trevor Hastie, Robert Tibshirani, David Bot-
stein, Russ B. Altman, Missing value estimation meth-
ods for DNA microarrays, 2001.

[3] Salakhutdinov and A. Mnih, Probabilistic matrix factor-
ization, 2008.

[4] Prateek J., Praneeth N., Sujay S., Low-rank matrix com-
pletion using alternating minimization 2012.

[5] Koren, R. Bell, and C. Volinsky., Matrix factorization
techniques for recommender systems 2009.

[6] Beutel A., Ahmed A., Alexander J. Smola., ACCAMS:
Additive Co-Clustering to Approximate Matrices Suc-
cinctly 2013.

[7] L. Joonseok, K. Seungyeon, L. Guy., Local Low-Rank
Matrix Approximation 2013.

[8] Pet Christian Hansen, The truncated SVD as a method
for regularization 1986.

[9] Gorban A.N., Neuroinformatics 1998.
[10] F. Maxwell Harper and Joseph A. Konstan, The Movie-

Lens Datasets: History and Context. ACM Transactions
on Interactive Intelligent Systems (TiiS) 5, 4, Article
19, 19 pages. 2015.

68

 https://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group374/Gorodnitskii2016AdaptiveApproximation/
 https://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group374/Gorodnitskii2016AdaptiveApproximation/
 https://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group374/Gorodnitskii2016AdaptiveApproximation/

[11] Diederik Kingma, Jimmy Ba, Adam: A Method for
Stochastic Optimization 2014.

[12] Matthew D. Zeiler, ADADELTA: An Adaptive Learn-
ing Rate Method 2012.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, Ruslan Salakhutdinov, Dropout: A Sim-
ple Way to Prevent Neural Networks from Overfitting,
2014.

[14] Bastien, Frédéric and Lamblin, Pascal and Pascanu,
Razvan and Bergstra, James and Goodfellow, Ian J. and
Bergeron, Arnaud and Bouchard, Nicolas and Bengio,
Yoshua, Theano: new features and speed improvements,
2012.

[15] Bergstra, James and Breuleux, Olivier and Bastien,
Frédéric and Lamblin, Pascal and Pascanu, Razvan and
Desjardins, Guillaume and Turian, Joseph and Warde-
Farley, David and Bengio, Yoshua, Theano: a CPU and
GPU Math Expression Compiler, 2010.

[16] Omer Levy, Yoav Goldberg, Neural Word Embedding
as Implicit Matrix Factorization, 2010.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean,
Efficient Estimation of Word Representations in Vector
Space, 2010.

[18] Sander Dieleman and Jan Schlüter and Colin Raffel and
Eben Olson and Søren Kaae Sønderby and Daniel Nouri
and Daniel Maturana and Martin Thoma and Eric Bat-
tenberg and Jack Kelly and Jeffrey De Fauw and Michael
Heilman and diogo149 and Brian McFee and Hendrik
Weideman and takacsg84 and peterderivaz and Jon and
instagibbs and Dr. Kashif Rasul and CongLiu and Brite-
fury and Jonas Degrave, Lasagne: First release., 2015.

69

	Introduction
	Problem Statement
	Basic Experiment
	Solution
	Primary experiment (Test on MovieLens 100K Data Set)
	Conclusion

