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Abstract

This paper is devoted to spectra of sparse macromolec-
ular clusters. We suggest such clusters to be modeled
by unweighed undirected tree ensembles with size dis-
tributed in a certain known way. The goal of this work
is to compute spectra of such ensembles analytically
as spectra of their adjacency matrices. The motiva-
tion to the problem investigated is computing spectra
of Bernoulli noise in sparse matrices which is essen-
tial in cases when the scale of the data and the noise
is the same. We solve the special cases of star trees
and full binary trees interpreting them as generalized
Bethe trees. The target function of an individual tree
is supposed to depend on the size of the tree and of an
ensemble - on size distribution.
Keywords: binary trees; star trees; spectrum

1. Introduction

The issue of tree ensemble spectra emerged in the
context of sparse macromolecular clusters spectra anal-
ysis. Macromolecules are suggested to be modeled by
unweighed undirected acyclic graphs - trees [1], and for
clusters Erdős–Rényi random graph model is used.

There are several reasons to this choice of model.
First of all, a macromolecule, which has no cycles, is
truly a tree. Second, the degree of a vertex is not too
high (very unlikely more than three if the ensemble is
random and sparse), which again corresponds with bio-
logical context. Finally, the size distribution of macro-
molecules, for example, exponential, can be included
into the model.

The spectrum of a graph is defined either by the
spectrum of its adjacency matrix or its Laplacian, de-
pending on the field of study and application[7]. In
physical models the adjacency matrix spectrum is in-

terpreted as the set of resonance frequencies and the
Laplacian spectrum defines relaxation of the system.
Other applications in graph theory and optimization
are thoroughly described in [8] and [9].

In recent studies there was noticed that some prop-
erties of macromolecular structures such as its spec-
trum envelope and spectrum inner structure hierarchy,
regardless of their initial context, are inherent generally
to tree ensembles, which resulted into reasonable desire
to find these spectra analytically.

Another approach to this question is that in sparse
matrices, for example, a DNA contact map, the noise is
Bernoulli and also sparse. If the matrix is interpreted as
an adjacency matrix, the noise is unlikely to join any al-
ready existing connected component, which means that
the spectrum of the whole matrix is the sum of the in-
vestigated spectrum and the spectrum of the noise. The
problem is that their scale can be nearly the same. In
this case the peculiar shape of noise spectrum can be
misinterpreted or at least can make the data incompre-
hensible [10, 11, 2]. The question is how to tell apart
the noise and the initial data and distinguish their prop-
erties.

In a recent paper [3] linear chains ensemble spec-
trum and its properties were thoroughly discussed.
Some of the results concerning the maximal eigenvalue
were obtained in [4].

In this paper we investigate branching trees. We
particularly look into the case of full binary trees and
star graphs with respect to their adjacency matrices as
these types of trees are most common in described en-
sembles. To solve these cases we use the method, based
on interpreting them as a generalized Bethe trees [5, 6],
and compute all their eigenvalues and their multiplici-
ties. We also look into ensembles of trees of particular
structure and compute the envelope of spectral density.
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(a) A full binary tree (b) A star

Figure 1: A full binary tree and a star with m branches
of k nodes.

2. Problem statement

Suppose we have an ensemble of trees and size of a
tree is distributed in a certain known way, for example,
exponentially. Our aim is to find the spectrum of an
individual tree and an ensemble.

2.1. Full binary trees

Let Tk be a full binary tree of level k (see 1a). This
means that length of a path from the root to an external
vertex is k. Such tree has 2k−1 vertices. Let Tk be its
adjacency matrix.

First, we need to find the spectrum of a single tree
of level k with 2k− 1 eigenvalues in it. Its function of
spectral density we call fk(λ ).

fk(λ ) : R→ N0,

where λ is an eigenvalue and fk(λ ) is its frequency
which is multiplicity divided by the number or eigen-
values.

Second, we consider an ensemble of such trees,
where k is distributed as

P(k) = Ce−µk,

where C = eµ −1 and µ is a parameter. This distribu-
tion is normalized:

∞

∑
k=1

P(k) =
∞

∑
k=1

Ce−µk = 1.

Then spectral density of the ensemble is represented as

∞

∑
k=1

P(k) fk(λ ) = f (λ ).

2.2. Star trees

For a star tree (see 1b) the problem is introduced
similarly. Let Sk,m be a star of m chains of level k
with m(k− 1) + 1 vertices and adjacency matrix Sk,m.
Its function of spectral density we call gk,m(λ ).

gk,m(λ ) : R→ N0,

where λ is an eigenvalue and gk,m(λ ) is its frequency
which is multiplicity divided by the number or eigen-
values.

The probability of a star to have parameters k and
m is normalized:

∞

∑
k=1

P(k|m) = 1,

∑
m

P(m) = 1.

We consider an ensemble of stars with particular m,
where k is distributed as

P(k|m) = Ce−µk,

where C = eµ −1 and µ is a parameter. And the target
function of spectral density of the ensemble is

∞

∑
k=1

P(k|m)gk,m(λ ) = gm(λ ).

We investigate m ≥ 3 as m = 1,2 corresponds to linear
chains.

3. Simulation

The computational experiment is carried out for ar-
tificially generated data. Its aim is to generate spectral
distribution of a particular tree and an ensemble. The
results allow us to make some assumptions about the
target functions and visualize the investigated spectra.

3.1. Description of the algorithm

Suppose we have an adjacency matrix of Tk or Sk,m,
introduced in the previous section. First, we calculate
its eigenvalues, which are real. Second, we construct a
histogram. It means that we divide the real axis into
segments of equal length ∆λ and construct a piece-wise
constant function f̂k:

f̂k(λ ) : R→ N0,

Here by N0 we mean all non-negative integers. On a
segment [l∆λ ;(l + 1)∆λ ] function f̂k(λ ) is equal to the
number of eigenvalues, which got into this segment.

f̂k(λ ) = ∑
i

#{λi ∈ [l∆λ ;(l +1)∆λ ]}, ∀λ ∈ [l∆λ ;(l +1)∆λ ],

where λi is an eigenvalue, l is an integer. As men-
tioned in the introduction, the maximal eigenvalue is
bound [4]:

|λ tree
max | ≤ 2

√
p−1. (1)

It means that we can actually only consider the segment
[−|λ tree

max |; |λ tree
max |] and instead of using ∆λ as a parameter

stick to the number of segments N in the histogram. It
seems to be reasonable to investigate the results for big
enough L and small enough ∆λ , or big enough N. Find-
ing the optimal value of ∆λ or N is a separate problem
as our estimation needs to be robust and informative.
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Figure 2: Eigenvalue distribution of a full binary tree
with level k = 6.

3.2. Full binary trees

For full binary trees we calculate spectra for sizes
up to 12 as bigger sizes are rare according to exponen-
tial distribution with small expectation. What is more,
as the complexity of eigenvalue computation is O(n3),
it takes much time yet the results are not informative.
The number of segments should be odd in order to avoid
irregularities near λ = 0 as this point should belong to
a segment, symmetric in respect to zero. Small compu-
tational errors can lead to calculating eigenvalues very
close to zero, both positive and negative, when in fact
all of them are equal to zero. Also the number of seg-
ments near one hundred seems to be most informative
from subjective point of view.

Maximal vertex degree for a full binary tree is p = 3,
so, according to inequality 1:

|λ tree
max | ≤ 2

√
2 < 3.

This is true for any size k of a full binary tree. For
k≥ 6 the spectrum changes insignificantly and seems to
be distinctively discrete. The peaks of local maxima for
different sizes coincide. As for the maximal eigenvalue,
the bigger k is, the bigger λ k

max. The tail of the distri-
bution, which is the series of the highest eigenvalues,
behaves like:

ϕ(λ ) = A exp

(
− 1√
|λ tree

max |−λ

)
,

where A is a constant, |λ tree
max |= 2

√
2. This fact is known

as Anderson localization.

3.3. Star trees

Most of the calculations are made for m = 3 and
m = 4, where m is the number of chains. The reason
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Figure 3: Eigenvalue distribution of a star with
m = 3, k = 6.

to this choice of m is that in random ensembles vertex
degrees are rarely more than 3. The length of a chain k
is distributed exponentially, so large sizes are also rare.

It was noticed that the number of original eigenval-
ues of an individual star is (2k−1) regardless of chain
number, and the multiplicity is either 1 or m−1.

The spectrum of a single star and of an ensemble
are quite different. The Anderson localization does not
take place.

4. Theoretical part

Following [6] denote Bk a generalized Bethe tree of
k levels (see fig.6), a rooted unweighed and undirected
tree with vertices of equal degree at one level. The root
is at level 1 and for level j = 1, . . . ,k the number of the
vertices is nk− j+1, of degree dk− j+1. Particularly, dk is
the degree of the root, nk = 1 and n1 is the number of

Table 1: Peak heights for different k, normalized

peak# ensemble k = 8 k = 9 k = 10
0 1.000 1.000 1.000 1.000
1 0.420 0.435 0.427 0.428
2 0.190 0.200 0.199 0.200
3 0.090 0.094 0.099 0.097
4 0.042 0.047 0.047 0.047

Table 2: Peak heights for different k, non-normalized

peak# ensemble k = 8 k = 9 k = 10
0 17259 85 171 341
1 7267 37 73 146
2 3283 17 34 68
3 1545 8 17 33
4 721 4 8 16

598



−3 −2 −1 0 1 2 3
Eigenvalue

0

5000

10000

15000

20000

25000
S
u
m
m
a
ri
ze
d
 m

u
lt
ip
lic
it
y

Figure 4: Eigenvalue distribution of a full binary tree
ensemble with level distributed exponentially, µ = 0.5.

external vertices. Let A(Bk) be an adjacency matrix
of a Bethe tree and σ(Bk) its spectrum. Recall that a
full binary tree adjacency matrix we note Tk and a star
Sk,m.

Theorem 1 [6]. If A j(d) is the j× j leading princi-
pal submatrix of the k×k symmetric tridiagonal matrix

Ak(d) =



0
√

d2−1√
d2−1 0

√
d3−1√

d3−1 0
. . . . . . . . . . . . . . . . . .

0
√

dk−1√
dk−1 0

√
dk√

dk 0


then

1. σ(A(Bk)) =

(
k−1⋃
j=1

σ(A j(d))

)
∪σ(Ak(d)).

2. The multiplicity of an eigenvalue of the matrix
A j(d) as an eigenvalue of A(Bk) is (n j− n j+1) for
j ∈ 1, . . . ,k−1, and eigenvalues of Ak(d), as eigen-
values of A(Bk), are simple.

5. Solution

5.1. Full binary trees

A full binary tree of level k has ni = 2i−1 vertices
at level i, all of degree di = 3 except for the leaves d1 =
1 and the root dk = 2. According to Theorem 1, its
spectrum can be computed as:

σ(Tk) =
k⋃

i=1

σ(Ai),

where Ai is the following:
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Figure 5: Eigenvalue distribution of a star ensemble
with level distributed exponentially, m = 3, µ = 0.5.

Ai =
√

2


0 1
1 0 1
· · · · · · · · · · · · · · ·

1 0 1
1 0


Denote Âi =

1√
2

Ai and λ̂ =
1√
2

λ .

Characteristic polynomial Fi = det(Âi + λ̂E) of ma-
trix Âi is found from the following recurrence equation:

Fi+1 = λ̂Fi−Fi−1,

F0 = 1, F1 = λ̂ .

The solution is obtained from another equation:

µ
2−µλ̂ + 1 = 0,

µ1,2 =
λ̂ ±

√
λ̂ 2−4

2
.

The solution Fi of this recurrence equation is:

Fn =
1√

λ̂ 2−4

(
λ̂ +

√
λ̂ 2−4

2

)i+1

−

− 1√
λ̂ 2−4

(
λ̂ −

√
λ̂ 2−4

2

)i+1

.

The solution to the equation Fi = 0 is:

λ̂ = 2 cos
π j

i + 1
, j = 1 . . . i.

Then the initial eigenvalues of matrix Ai are:

λ = 2
√

2 cos
π j

i + 1
, j = 1 . . . i.
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Figure 6: A generalized Bethe tree of k levels.

So, the spectrum of a full binary tree Tk is the following:

σ(Tk) =
k⋃

n=1

n⋃
j=1

{
2
√

2cos
π j

n + 1

}
. (2)

As for eigenvalue multiplicities, according to Theo-
rem 1, the contribution of the i-th principal submatrix
is:

mi = ni−ni+1 = 2k−i−1, i = 1 . . .k−1, mk = 1.

Denote multiplicity of eigenvalue λ as an eigenvalue of
the initial tree m(k,λ ), then:

m(k,λ ) =
k

∑
i=1

mi I(λ , i),

where I(λ , i) is indicator function, equal to 1 if λ ∈σ(Ai)
and 0 otherwise. The target function fk is

fk(λ ) =
m(k,λ )

2k−1
.

Recall that λ ∈ σ(Ai) if there exists an integer j such
that:

λ = 2
√

2 cos
π j

i + 1
.

The i-th value in the series of main peaks which hap-
pens to be the series of maximal eigenvalues of levels 1
to k is:

λ
main
i = 2

√
2 cos

π

i + 1
. (3)

This value contributes to the spectrum as an eigenvalue
of every (i + 1) principal submatrix:

2
√

2 cos
2 π

2 (i + 1)
, . . . , 2

√
2 cos

n π

n (i + 1)
,

while n (i + 1)≤ k + 1. Thus for the i-th main peak the
following equation takes place:

mk + · · ·+ mk+i = 2k,

where k is the level of the tree. The solution to this
equation is

mmain
i,k =

[
2k

2i+1−1

]
,

where ψ(x) = [x] is the function of the closest integer.
Then, the envelope of function fk is the following:

fk

(
2
√

2 cos
π

i + 1

)
=

1
2k−1

[
2k

2i+1−1

]
. (4)

The spectrum of the full-binary tree ensemble is

σ
ens =

∞⋃
k=1

k⋃
j=1

{
2
√

2cos
π j

k + 1

}
, (5)

and the target function f (λ ) is

f (λ ) =
∞

∑
k=1

(eµ −1) e−µk fk(λ ) =

=
∞

∑
k=1

(eµ −1) e−µk m(k,λ )

2k−1
.

For main peaks:

f
(

2
√

2 cos
π

i + 1

)
= ∑

k
(eµ−1)e−µk 1

2k−1

[
2k

2i+1−1

]
≈

≈ eµ −1
2i+1−1

∞

∑
k=1

e−µk 2k

2k−1
(6)

with error δ such that:

δ ≤ (eµ −1)
∞

∑
k=1

e−µk 1
2

1
2k−1

≤

≤ 1
4

eµ −1
2eµ −1

. (7)

5.2. Star trees

For a star of m branches and k levels, following the
notation, ni = m and di = 2 except for the root nk = 1
and dk = m, and leaves d1 = 1. According to Theorem
1, its spectrum:

σ(Sk,m) =
k⋃

i=1

σ(Bi,m),

where Bi,m is the following:

Bi,m =


0 1
1 0 1
· · · · · · · · · · · · · · ·

1 0
√

m√
m 0

 .
As multiplicity mi = ni−ni+1 = 0 for any i = 1, . . . ,k − 2,
we only compute the (k− 1)-th principal submatrix,
which is the adjacency matrix of a linear chain, and
we have already solved that case with:

λ = 2 cos
π j
k
, i = 1 . . .k−1,

600



σ
lin
k =

k−1⋃
j=1

{
2cos

π j
k

}
and multiplicities mk−1 = m−1. Characteristic polyno-
mial Fi = det(Bi,m + λE) of matrix Bk,m can be found
from the following recursive equation:

Fi+1 = λFi−Fi−1,

F0 = m, F1 = λ .

The solution Fi to the recurrence equation is

Fi =
m(λ +

√
λ 2−4)−2λ

2
√

λ 2−4

(
λ −
√

λ 2−4
2

)i

−

− m(λ −
√

λ 2−4)−2λ

2
√

λ 2−4

(
λ +
√

λ 2−4
2

)i

.

For |λ |< 2 the equation Fi = 0 can be transformed into:

tan iϕ =
m

m−2
tanϕ,

tanϕ =

√
4−λ 2

λ
,

λ = 2cosϕ.

For |λ | ≥ 2:

tanh iϕ =
m

m−2
tanhϕ,

tanhϕ =

√
λ 2−4

λ
,

λ = 2coshϕ.

Analysis shows that previous equation has no more
than 2 roots λ1, λ2 such that λ1 =−λ2 = λmax. What is
more, λmax ∈ (

√
m; m√

m−1
).

For equation Fn = 0 denote its set of roots σn,m.
Then the spectrum of a star is:

σ(Sn,m) =
n⋃

j=1

{
2cos

π j
n + 1

}
∪σn,m = σ

lin
n ∪σn,m (8)

with multiplicities:

m(n,λ ) = m−1; λ ∈ σ
lin
n ,

m(n,λ ) = 1; λ ∈ σn,m.

The target function gk,m(λ ) is

gk,m(λ ) =
m(k,λ )

m(k−1)+ 1
. (9)

For an ensemble:

σ
ens
m =

∞⋃
k=1

σ
lin
k ∪σk,m (10)

with target function gm(λ ):

gm(λ ) =
∞

∑
k=1

(eµ −1) e−µk gk,m(λ ) =

= (eµ −1)
∞

∑
k=1

e−µk m(k,λ )

m(k−1)+ 1
. (11)

6. Conclusion

In this paper we investigated the spectra of sparse
macromolecular clusters, modeled by tree ensembles.
We particularly looked into the cases of two common
tree types: full binary trees and star trees. Interpreting
these trees as Bethe trees, we obtained the following
results.

We computed the spectrum of an individual full
binary tree (see formula 2) and its envelope defined by
the series of main peaks (see formulae 3 and 4). After
that we computed the spectral density of an ensemble
of such trees with size distributed exponentially (see
formula 5), and its envelope (see formulae 6 and 7).

We also computed the spectrum of a star, partly in
its exact form, partly as the set of roots of a transcen-
dental equation (see formulae 8 and 9). We improved
the accuracy of the maximal eigenvalue bound. Finally,
we computed the spectrum of star tree ensemble with
particular branch number (see formulae 10 and 11).
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