
Classification of Brain Networks using Dirichlet Distribution of Graph
Spectra

Anna Tkachev
National Research University Higher
School of Economics, Moscow, Russia

annatkachev42@gmail.com

Yulia Dodonova
National Research University Higher
School of Economics, Moscow, Russia

ya.dodonova@mail.ru

Abstract

In this work, graph spectra of the normalized graph
Laplacians of brain networks (connectomes) are used
for solving the task of classifying autism spectrum dis-
order against typical development. We find the most in-
formative group of eigenvalues by introducing a window
and sliding it through all possible positions. We next
assume that these values are sampled from a Dirich-
let distribution and build a linear model with a single
feature that is based on estimation of a Dirichlet pa-
rameter. The proposed classifier outperforms the base-
line in terms of both mean ROC AUC value (0.74) and
stability of ROC AUC values to the variations in the
data. Classifiers that implemented a similar approach
but used geometric distances instead of statistical meth-
ods showed worse performance. This implies that the
Dirichlet distribution might be a useful tool for the anal-
ysis of normalized Laplacian spectra when solving tasks
of classifying brain networks.

Keywords. connectomes, graph spectra, graph Lapla-
cian, Dirichlet distribution

1. Introduction

One way of exploring the human brain is by repre-
senting it as a network of macroscale neural connec-
tions, and then studying properties of this network.
These networks (or graphs) are called connectomes.
Connectomes are constructed from neuroimaging data
so that nodes represent brain regions and edge weights
show some measure of structural or functional connec-
tion between the regions.

It can be hypothesized that these networks differ
in normal and pathological brains and hence network
representation of human brains can help to classify nor-
mal and pathological development. However, to be able
to run machine learning algorithms one need to con-
struct graph-based features that capture most informa-

tive structural properties of the respective networks.

We propose that spectra of the normalized graph
Laplacians of brain networks are particularly useful for
a task of classifying connectomes. In our previous works
[1],[2], we mainly considered the shape of the distri-
bution of the eigenvalues, computed pairwise distances
between the spectral distributions and next run a sup-
port vector machines (SVM) classifier with the kernels
based on these distances. In [1], we explored behavior of
the kernels that were based on information-theory dis-
tances: the Kullback-Leibler divergence and the Jensen-
Shannon distance. However, these kernels required den-
sity reconstruction, and the outcomes of classification
were extremely sensitive to the parameter used to re-
construct density (the number of bins). For a task of
classification of autism spectrum disorder versus typi-
cal development, the area under the receiver operating
characteristic curve (ROC AUC) was about 0.65 on av-
erage, although with some arbitrary numbers of bins
it unsystematically peaked higher. In [2], we aimed
to overcome this problem by using the earth mover’s
distance (EMD) as a measure of dissimilarity between
spectral distributions. For the same task of classifying
autism spectrum disorder against typical development,
we obtained classification quality of 0.71 (in terms of
ROC AUC) using the SVM with the EMD-based ker-
nel.

Unlike our previous works, in this paper we are not
considering the shape of the spectral distributions of
brain networks. Instead, we are considering each vector
of eigenvalues as a vector of ”proportions” and using
appropriate measures of similarity.

In what follows we give the motivation and de-
tails of the proposed approach and show how it works
for the task of classifying autism spectrum disorder
against typical development. We are using a set of pre-
computed structural connectomes, the same dataset as
in our previous works. We show that our proposed ap-
proach works better for the given classification task,
implying that this model might allow to better grasp

522

the significance of graph spectra in representing prop-
erties of brain networks.

2. Graph Spectra

Working with graphs in a machine learning frame-
work can be tricky. One way to produce feature vectors
to be used in machine learning algorithms is to consider
a spectrum of some matrix corresponding to the graph.
In our study we are working with the spectrum of the
normalized graph Laplacian, which is used in graph the-
ory to derive many useful graph properties.

Given an undirected weighted graph with n nodes,
we define the adjacency matrix A as the n× n matrix
with entries ai j, where ai j is the weight between the
respective nodes (in this study, we deal with weighted
graphs where the weights are not binary).

We define D to be a diagonal matrix of weighted
node degrees:

di = ∑
j

ai j. (1)

The normalized graph Laplacian is given by:

L = D−1/2(D−A)D−1/2. (2)

Let λi,0,...λi,(n−1) be the eigenvalues of the normal-
ized Laplacian of the i-th connectome, sorted in ascend-
ing order:

λi,0 ≤ ...≤ λi,(n−1)

The spectrum of the normalized graph Laplacian
can provide us with useful properties of the graph. For
example, in [3] the authors show that specific patterns
in the graph result in specific eigenvalues. For a gen-
eral theory on the normalized graph Laplacian and its
spectrum, we refer to [4] or [5].

In this work we will only talk briefly of some partic-
ular properties. The first property is that the eigenval-
ues of the normalized Laplacian are always in the range
from 0 to 2:

0≤ λi, j ≤ 2

Second, for the normalized Laplacian spectrum of
any network the following holds:

λi,0 = 0 (3)

In context of this study, this means that there is
no variability between networks in the value λi,0. We
eliminate it from all the analyses. In what follows, we
denote the vector of eigenvalues:

Λi = (λi,1,λi,(n−1)) (4)

The third property, which is most important for
this work, is that the sum of the eigenvalues always
equals n:

n−1

∑
j=0

λi j = n (5)

This property motivates the method used in this
work. In our previous works ([1] [2]), we considered the
individual components λi j of a given sample i to be in-
stances of a univariate random variable, and computed
similarity between two vectors Λi, Λs using distances
between probability measures. In this work, we assume
the vector Λi

n to be sampled from the r-variate Dirich-
let distribution (r = n−1) and compute similarities be-
tween vectors of eigenvalues based on this assumption.

3. Dirichlet Distribution

The Dirichlet distribution is one of the most known
multivariate distribution that models random vectors
with non-negative components that sum up to a con-
stant.

Let (p1,..pr) denote a random vector, pi > 0,

∑ j p j=1. Then the probability density of the Dirich-
let distribution with vector of parameters (α1,..αr) is
given by:

Γ(∑
r
j=1 α j)

∏
r
j=1 Γ(α j)

r

∏
j=1

p
α j−1
j , (6)

where Γ is the gamma function.

An intuitive way to interpret a vector sampled from
the Dirichlet distribution with the vector-parameter
(α1, ..αr) is to see it as a collection of proportions in
which one cuts a segment of length 1 into r parts. The
lengths of each of these r parts can vary slightly around
a given mean, but not too much. The vector of these
mean lengths will be the vector (α1

∑ j α j
,.. αr

∑ j α j
). This

gives us the intuitive interpretation of the parameter of
the Dirichlet distribution. More on the Dirichlet distri-
bution can be read, for example, in [6].

A standard way of finding parameter estimates for
probability distributions is to minimize the maximum
likelihood function, and these estimates are called maxi-
mum likelihood estimates (MLE). For the Dirichlet dis-
tribution, there is no formula for the MLE, but the
paper [7] provides iterative schemes for obtaining the
parameter. We refer you to this paper if you want
more details about the MLE and likelihood function of
the Dirichlet distribution. We used the python library
dirichlet [8] that is based on this paper, and used the
mle and loglikelihood functions from this library.

4. Data and Preprocessing

In this work, we use a publicly available dataset [9],
[10] that includes precomputed DTI-based matrices of
structural connectomes of 51 high-functioning autism
spectrum disorder (ASD) subjects (6 females) and 43
typically developing (TD) subjects (7 females). Aver-
age age (age standard deviation) is 13.0 (2.8) years for
ASD group and 13.1 (2.4) years for TD group.

523

Nodes for connectomes are defined using a parcel-
lation scheme that is based on a large meta-analysis
of fMRI studies combined with whole-brain functional
connectivity mapping. This approach produces 264
equal-size brain regions and thus 264×264 connectiv-
ity matrices.

Network edges result from brain deterministic trac-
tography. It is performed on voxelwise fractional
anisotropy values using the fiber assignment by con-
tinuous tracking (FACT) algorithm. Edge weights in
the original matrices are proportional to the number of
streamlines detected by the algorithm. We additionally
weight the edges by the squared distances between the
respective regions:

ai j =
araw

i j

li j
, (7)

where li j is the Euclidean distance between centers of
the regions i and j computed based on the MNI coor-
dinates of region centers provided by the authors of the
dataset.

The authors of the dataset only report the results
of group comparison based on global graph metrics [10].
The best available classification baseline is ROC AUC
0.77 obtained by [11]. The authors trained linear SVM
on node degrees computed from matrices weighted by
squared Euclidean distances between regions and nor-
malized by the geometric mean of the adjacent node
degrees. That was the same weighting scheme (7) as
we use in this study. However, we do not apply that
normalization procedure because it partly replicates the
computation of the normalized Laplacians.

5. Methods

To compare the performance of different classifiers,
we use the area under the ROC-curve (ROC AUC) met-
ric. Because the sample size is quite small, we compute
the out-of-fold mean for the ROC AUC (and not the
mean ROC AUC inside of the cross-validation). To do
this, we train our model inside the cross-validation, each
time yielding a vector of predicted probabilities for test
objects, and then join these vectors into one, which is
of the same length as the target vector. We then use
this vector to compute the ROC AUC. Doing this pro-
cedure for different partitions of the data into folds, we
calculate the mean value and standard deviation of the
ROC AUC. In this paper, we used 10 different random
partitions of the data into 5 folds.

5.1. Eigenvalues as Features

To produce a baseline, we use logistic regression
classifier with l2 regularization with the eigenvalue vec-
tors (4) as the features. Note that the eigenvalues are
first sorted in ascending order.

5.2. Dirichlet-Based Classifier

In this work, we propose the following approach.
Based on the vectors of eigenvalues, we construct a sin-
gle feature using the Dirichlet distribution. Having this
single feature, we then build a linear classifier, which is
in this case simply a point on the real line that separates
the two classes.

To be precise, this is the procedure. Assuming the
data to have a Dirichlet distribution, we estimate its
parameter vector from the data (using only the train
data). Afterwards, we calculate the loglikelihood that
each (test) sample is generated by the Dirichlet distri-
bution with this parameter. In other words, let Λi be
the vector of eigenvalues as defined in (4), M and N be
the sets of train and test indexes of the objects, respec-
tively. Then for each sample i ∈ N we get a value:

fi = L (α
mle{Λk|k ∈M} | Λi), (8)

where αmle is the maximum likelihood estimate of the
Dirichlet distribution parameter from the train sample,
and L is the loglikelihood of this parameter given a test
object i. The values of αmle and L are computed using
the mle and loglikelihood functions from the python li-
brary [8]. We next use the vector F = { fi} as a single
feature vector.

As a side note, we want to mark that the initial
idea was to compute the similarity of test objects to
the average distribution of the first and second classes
separately. In practice, however, the parameters esti-
mated from the two classes separately turned out to
be almost identical, which of course gave us two very
highly correlated features.

5.3. Adding a Sliding Window

The method from the previous section did not give
satisfactory results. We reasoned that (n− 1) dimen-
sions (which is 263 in this study) might be too high, and
that most eigenvalues might actually be unnecessary
noise and not contribute to the classification perfor-
mance. To tackle this problem, we introduce a sliding
window that leaves intact µ central eigenvalues (µ < n)
and sums up together the eigenvalues on the left and on
the right of the window, producing two numbers in ad-
dition to the central µ values. Because the sum of the
eigenvalues is still n, we can redo the procedure from the
previous section, but with vectors with (µ +2) elements
instead of (n−1). We then optimize the performance of
the classifiers over all possible positions of the window.

In other words, let

Ωi = (
τ

∑
s=1

λi,s, λi,(τ+1), λi,(τ+2), ..., λi,(τ+µ),
n−1

∑
s=τ+µ+1

λi,s)

(9)

524

be the vector of length (µ + 2) and i the index of the
sample, then for the i-th sample we get one feature:

f̃i = L (α
mle{Ωk|k ∈M} | Ωi), i ∈ N, (10)

where αmle, L, M, N are defined as in (8). We next
use the vector F̃ = { f̃i} as a single feature vector. We
optimize the performance of the linear classifier over
the value τ, τ ∈ {1,2, ...,n− µ − 2}, which defines the
position of the sliding window. Throughout this study,
we only work the value of µ fixed at 20.

5.4. Alternative Approaches

We next question whether the results similar to
those obtained using Dirichlet-based model can be ob-
tained without actually making the assumption that
the eigenvalues of the normalized Laplacian are sam-
pled from the multivariate Dirichlet distribution. We
evaluate two ideas.

First, we add a sliding window before running a
baseline logistic regression classifier. In other words,
we now run logistic regression classifier with l2 regular-
ization using the feature vectors Ω defined by (9); thus,
we now deal with (µ + 2) features (µ = 20). We thus
test the idea that adding a sliding window is the most
important step that improves the performance of any
classifier on the vectors of eigenvalues.

Second, we evaluate the idea that using a particular
model, i.e. a Dirichlet-based model, might not be cru-
cial for the proposed pipeline. Indeed, by constructing
a feature F̃ (10) we estimate how close our test objects
are to an estimate of some ”average” obtained from a
train sample. Classification based on this feature means
that we expect objects from one class to be close to this
”average” estimate, while objects from the other class
to differ from it. In (10), the value of this ”average” is
estimated as a parameter of the Dirichlet distribution,
and the closeness is defined in terms of probability of a
particular test object to come from the Dirichlet distri-
bution with the estimated parameter. We next simplify
the procedure and test whether other proxies of the dis-
tance from some ”average” estimate can also be useful
for the purpose of classification.

To test this idea, we first estimate the mean vector
of Ω as the most obvious proxy of the parameter of the
Dirichlet distribution (this step is again based on the
train data) and then calculate the distance from each
(test) sample to the mean vector:

gi = ρ(Ωi,
1
|M| ∑

k∈M
Ωk), i ∈ N, (11)

where M and N are defined as in (8), Ωi is defined by
(9), µ = 20. We use three different distance measures
ρ: euclidean, cosine and chi-squared distances.

sect. Classifiers AUC AUC
mean std

5.1 Eigenvalues, 0.643 0.046
logistic regression

5.2 Dirichlet likelihood, 0.666 0.004
all eigenvalues

5.3 Dirichlet likelihood, 0.739 0.003
sliding window

5.4 Eigenvalues, logistic 0.671 0.024
regression, sliding window

5.4 Euclidean distance, 0.676 0.012
sliding window

5.4 Cosine distance, 0.664 0.016
sliding window

5.4 Chi-squared distance, 0.685 0.010
sliding window

Table 1. Best results for classifiers from section 5

Euclidean distance is given by:

ρEuclidean(Ωi,Ω j) =

√√√√µ+2

∑
k=1

(ωik−ω jk)2 (12)

Cosine distance is given by:

ρcosine(Ωi,Ω j) =

µ+2
∑

k=1
ωik ∗ω jk√

µ+2
∑

k=1
ω2

ik

√
µ+2
∑

k=1
ω2

jk

(13)

Chi-squared distance is given by:

ρchi−squared(Ωi,Ω j) =
µ+2

∑
k=1

(ωik−ω jk)
2

ω jk
(14)

We next construct linear classifiers based on a single
feature G = {gi} (11) that use (12), (13), or (14) as a
distance measure, and compare their performance with
that of the proposed Dirichlet-based classifier.

5.5. Tools

We used Python and IPython notebook platform,
specifically NumPy, SciPy, pandas, matplotlib, scikit-
learn and dirichlet [8] libraries.

6. Results and Discussion

In this section, we discuss the performance of the
classifiers in the same order as they are presented in
Section 5. Table 1 summarizes the results of all exper-
iments.

525

Figure 1. Logistic regression on all eigenvalues, ROC
AUC mean (± 2 standard deviations)

6.1. Logistic Regression on All Eigenvalues

Figure 1 shows the performance of logistic regres-
sion with l2 regularization on all of the eigenvalues (i.e.,
on the vectors of features defined by (4)). We plot
the mean ROC AUC value over different 5-fold cross-
validation splits against the values of the regularization
parameter. You can see that regularization doesn’t in-
crease performance of this classifier. The highest ROC
AUC value obtained with this classifier is 0.643.

6.2. Dirichlet-Based Linear Classification

We next evaluate the performance of the linear clas-
sifier that is based on a single feature F = { fi}, with fi
defined by (8). Note that with this single feature, our
classifier is simply a point on the real line that sepa-
rates the two classes. The classifier has no parameters
to be optimized. As shown in Table 1, this classifier
produces ROC AUC value 0.666, which does not out-
perform the baseline. However, the standard deviation
of ROC AUC values across different splits of the data
is much lower than that of the baseline classifier.

6.3. Dirichlet-Based Classification with a
Sliding Window

Next, we modify our Dirichlet-based classifier by
adding a sliding window. We now work with F̃ = { f̃i}
for which the elements are defined by (10). Figure 2
shows the performance of this modified classifier. The
x-axis corresponds to the index of the eigenvalue that
stands in the middle of the window, i.e. the value (τ +
11). The blue vertical band shows the optimal position
of the center of the sliding window (we will draw this
band in blue on other plots too for reference).

Figure 2. Dirichlet-based model with a sliding win-
dow, mean ROC AUC (± standard deviation in the
bottom)

Interestingly, the optimal position of the center of
the window is around the value 132, which also happens
to be the center of the original vector of eigenvalues. In
other words, central eigenvalues are the most informa-
tive for our classification task.

The ROC AUC value of the Dirichlet-based clas-
sifier obtained with the optimal position of a sliding
window is 0.739, which clearly outperforms the base-
line.

Importantly, the standard deviation of ROC AUC
values across different cross-validation splits of the data
stays very low throughout all of the positions of the
window. This happens because the parameter vector
can be estimated on any given subset of reasonable size,
and the results from different subsets are very close in
terms of the loglikelihood function. This means that
the classification quality does not depend that much on
the partition of the data into folds, only on the sample
itself – thus the low standard deviation of ROC AUC.

As mentioned above, our feature F̃ represents the

526

Figure 3. Values of the Dirichlet-based feature F̃ in
two classes

probability of the sample to come from the assumed
Dirichlet distribution with the estimated ”average” pa-
rameter. High classification quality obtained based on
this single feature means that objects from one class are
systematically more likely to come from this ”average”
distributions than objects from the other class. Figure
3 illustrates this idea: it shows the boxplot of the values
of F̃ for the two groups (the values of F̃ are obtained
using the same cross-validation procedure). You may
note that it is higher for the ASD group than for TD
group. We can interpret these results as the fact that
ASD samples tend to be more similar to the average
than TD samples.

6.4. Other Distance-Based Classifiers

Figure 4 shows the performance of the logistic re-
gression classifier with l2 regularization on the eigenval-
ues with a sliding window. Regularization parameter is
set to 1 (other values showed very similar plots). The
performance is not really stable throughout the position
of the window. Nevertheless, the performance is slightly
higher (mean ROC AUC 0.671) than the baseline.

Figure 5 shows the performance of the linear classi-
fiers discussed in 5.4 that use the Euclidean, cosine and
chi-squared distances. You can note that unlike the
results of logistic regression, the performance of these
classifiers changes smoothly depending on the position
of the sliding window; there is a wide plateau on all
three plots that corresponds to the sliding window set
at the central part of the vector of sorted eigenvalues.

The best results obtained with these three classi-
fiers are quite close: mean ROC AUC 0.676, 0.664 and
0.685 for Euclidean, cosine and chi-squared distances,
respectively. A slightly better result is achieved with
the chi-squared distance. Still, these results are worse

Figure 4. Logistic regression on Ω, mean ROC AUC
values depending on the position of the sliding win-
dow

Figure 5. Linear classifiers that use Euclidean, cosine
and chi-squared distances from the average, mean
ROC AUC

than those obtained with our proposed method (al-
though somewhat better than the baseline). Note that
the standard deviations of ROC AUC values (shown in
Table 1) are much higher than those obtained with the
Dirichlet-based classifiers.

7. Conclusions

In this paper, we proposed a novel algorithm for
classifying brain networks. We started with eigenvalues
of the normalized graph Laplacians as initial feature
vectors and constructed a linear classifier that used an
assumption that these eigenvalues were sampled from a
Dirichlet distribution. We demonstrated how the pro-
posed algorithm worked in a classification task of sepa-
rating autism spectrum disorder from typical develop-
ment. The classifier showed good performance, indicat-

527

ing that graph spectra were informative for connectome
classification tasks.

Similar to our previous works, we used the eigen-
values of the normalized graph Laplacians to construct
a classifier. Unlike our previous works, the vector of
eigenvalues was assumed to be sampled from the Dirich-
let distribution. A linear classifier based on a single fea-
ture was proposed. The feature was constructed by es-
timating the parameter of the average distribution and
then computing the likelihood of each sample given this
parameter. Additionally, only part of the eigenvalues
was taken into account by introducing a window and
sliding it through all possible positions. The best clas-
sifier constructed with this procedure showed a mean
ROC AUC 0.73. Importantly, the proposed classifier
was robust to variation in the data and showed vary
low standard deviation of ROC AUC value across dif-
ferent splits of the data into test and train parts within
the cross-validation procedure.

For the purpose of comparison, we considered sim-
ilar classifiers that used geometric distances instead
of our proposed statistical method. These classifiers
showed worse performance, implying that the Dirichlet
distribution might be a useful model for the analysis of
graph spectra in brain connectome classification tasks.
It is also noteworthy that optimizing the position of the
sliding window largely improved the performance of the
original classifier. This fact points to the supposition
that some part of the spectrum of the normalized graph
Laplacian might be more informative than the rest of
the spectrum for the classification task discussed in this
paper.

Acknowledgments. The article was prepared within
the framework of the Academic Fund Program at the
National Research University Higher School of Eco-
nomics (HSE) in 2016 (grant #16-05-0050) and by
the Russian Academic Excellence Project ”5-100”. We
gratefully acknowledge UCLA Multimodal Connectiv-
ity Database for making the dataset available to the
research community.

References

[1] Dodonova, Y., Korolev S., Tkachev A., Petrov, D.,
Zhukov, L., Belyaev, M.: Classification of structural
brain networks based on information divergence of graph
spectra. Machine Learning for Signal Processing Pro-
ceedings (2016, accepted).

[2] Dodonova, Y., Belyaev, M., Tkachev, A., Petrov, D.,
Zhukov, L. : Kernel classification of connectomes based
on earth mover’s distance between graph spectra. Pro-
ceedings of the Workshop on Brain Analysis using Con-
nectivity Networks (2016, accepted)

[3] Banerjee A., Jost J.: Graph Spectra as a Systematic
Tool in Computational Biology.Discrete Applied Math-
ematics, 157, 2425–2431 (2009)

[4] Chung, F.: Spectral Graph Theory (1997)
[5] Mieghem, P.: Graph Spectra for Complex Networks

(2011)
[6] Frigyik, B., Kapila, A., Gupta, M.: Introduction to the

Dirichlet Distribution and Related Processes (2010)
[7] Minka, T.: Estimating a Dirichlet distribution (2012)
[8] Available online at: https://github.com/ericsuh/dirichlet
[9] Brown, J.A., Rudie, J.D., Bandrowski, A., Van Horn,

J.D., Bookheimer, S.Y.: The UCLA multimodal con-
nectivity database: a web-based platform for brain con-
nectivity matrix sharing and analysis. Frontiers in Neu-
roinformatics 6, 28 (2012)

[10] Rudie, J.D., Brown, J.A., Beck-Pancer, D., Hernandez,
L.M., Dennis, E.L., Thompson, P.M., et al.: Altered
functional and structural brain network organization in
autism. Neuroimage Clin 2, 79–94 (2013)

[11] Petrov, D., Dodonova, Y., Zhukov, L., Belyaev, M.:
Boosting Connectome Classification via Combination of
Geometric and Topological Normalizations. PRNI Pro-
ceedings (2016, accepted)

528

